K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 11 2017

Lời giải:

a)

Theo định lý Bezout, số dư của đa thức $f(x)$ khi chia cho \(2x-5\) là:

\(f\left(\frac{5}{2}\right)=\frac{677}{4}\)

b) Gọi $Q(x)$ là đa thức thương khi thực hiện phép chia, và $ax+b$ là đa thức dư

Ta có: \(f(x)=(x^2-3x+2)Q(x)+ax+b\)

Cho \(x=1\Rightarrow f(1)=0.Q(0)+a+b\)

\(\Leftrightarrow 11=a+b(1)\)

Cho \(x=2\Rightarrow f(2)=0.Q(2)+2a+b\)

\(\Leftrightarrow 81=2a+b(2)\)

Từ (1),(2) suy ra \(a=70; b=-59\)

Vậy đa thức dư là \(70x-59\)

25 tháng 10 2020

1. 2x3 + 4x2 + 5x + 3 

= 2x3 + 2x2 + 2x2 + 2x + 3x + 3

= 2x2( x + 1 ) + 2x( x + 1 ) + 3( x + 1 )

= ( x + 1 )( 2x2 + 2x + 3 )

=> ( 2x3 + 4x2 + 5x + 3 ) : ( x + 1 ) = 2x2 + 2x + 3

2.a) 2x3 - 3x2 + x + a chia hết cho x + 2

Ta có đa thức chia có bậc 3, đa thức bị chia có bậc 1

=> Thương bậc 2

Lại có hệ số cao nhất là 2 nên đặt đa thức thương là 2x2 + bx + c

=> 2x3 - 3x2 + x + a chia hết cho x + 2 

⇔ 2x3 - 3x2 + x + a = ( x + 2 )( 2x2 + bx + c )

⇔ 2x3 - 3x2 + x + a = 2x3 + bx2 + cx + 4x2 + 2bx + 2c

⇔ 2x3 - 3x2 + x + a = 2x3 + ( b + 4 )x2 + ( c + 2b )x + 2c

Đồng nhất hệ số ta được :

\(\hept{\begin{cases}b+4=-3\\c+2b=1\\2c=a\end{cases}}\Leftrightarrow\hept{\begin{cases}b=-7\\c=15\\a=30\end{cases}}\)

Vậy a = 30

b) x2 - 3x + 3 chia x - a được thương là x + 3 dư 21

=> x2 - 3x + 3 = ( x - a )( x + 3 ) + 21

⇔ x2 - 3x + 3 - 21 = x2 + 3x - ax - 3a

⇔ x2 - 3x - 18 = x2 + ( 3 - a )x - 3a

Đồng nhất hệ số ta được :

\(\hept{\begin{cases}3-a=-3\\-3a=-18\end{cases}}\Leftrightarrow a=6\)

Vậy a = 6

c) Tí mình gửi link nhé

25 tháng 10 2020

c) https://imgur.com/TzbHKPG

Bạn chịu khó đánh máy tí nhé ;-;

b: f(x)=3x^3+4x^2-2x+7

\(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{3x^3+4x^2-2x+7}{x+2}\)

\(=\dfrac{3x^3+6x^2-2x^2-4x+2x+4+3}{x+2}\)

=3x^2-2x+2+3/x+2

Số dư là 3

c: \(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^3\left(x-5\right)+2\left(x-5\right)}{x-5}=x^3+2\)

=>Số dư là 0