K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2017

b1:

Bạn cũng có thể gộp chung thế này: 
MI^2 + ME^2 + MK^2 = MI^2 + Me^2 + AE^2 = MI^2 + MA^2 >= 
M'H^2 + M'A^2 = [(M'H + M'A)^2 + (M'H - M'H)^2]/2 = 
AH^2/2 + (M'H - M'A)^2/2 
=> MI^2 + Me^2 + MK^2 đạt min. bằng AH^2/2 khi M'A = M'H và 
sảy ra dấu "=" thay vì dấu ">=", tức khi M nằm trên AH. 
=> M trùng với M' và MA = M'A = M'H = MH 
=> M nằm ở trung điểm AH

17 tháng 4 2017

ơi giời ơi bà con ơi thi HSG mà bài này ko bt làm 

29 tháng 5 2021

A B C M I J K H

Kẻ đường cao AH của tam giác ABC, ta có:

\(MI^2+MJ^2+MK^2=MI^2+MA^2=\left(MI+MA\right)^2-2MI.MA\ge\frac{\left(MI+MA\right)^2}{2}\)

Lại có: \(MI+MA\ge AI\ge AH\), cho nên: \(MI^2+MJ^2+MK^2\ge\frac{AH^2}{2}\)(không đổi)

Dấu "=" xảy ra <=> M là trung điểm AH.