K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2017

a) \(\sqrt{x+1}=7\Rightarrow x+1=49\Rightarrow x=48\)

b) \(\left(x-2\right).\left(x+\dfrac{2}{3}\right)>0\)

\(\Rightarrow\left(x-2\right).\left(x+\dfrac{2}{3}\right)\) cùng dấu

\(\Rightarrow\left\{{}\begin{matrix}x-2>0\\x+\dfrac{2}{3}>0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x-2< 0\\x+\dfrac{2}{3}< 0\end{matrix}\right.\)

Với \(\left\{{}\begin{matrix}x-2>0\\x+\dfrac{2}{3}>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>2\\x>-\dfrac{2}{3}\end{matrix}\right.\Rightarrow x>2\)

Với \(\left\{{}\begin{matrix}x-2< 0\\x+\dfrac{2}{3}< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< 2\\x< -\dfrac{2}{3}\end{matrix}\right.\Rightarrow x< -\dfrac{2}{3}\)

Vậy \(\left[{}\begin{matrix}x>2\\x< -\dfrac{2}{3}\end{matrix}\right.\)

c) \(\left(\dfrac{2}{3}x-1\right).\left(\dfrac{3}{4}x+\dfrac{1}{2}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{2}{3}x-1=0\\\dfrac{3}{4}x+\dfrac{1}{2}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{2}{3}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{2}{3}\end{matrix}\right.\)

Chúc bạn học tốt!!!!

26 tháng 11 2017

a, \(\sqrt{x+1}=7\\ \Rightarrow x+1=49\\ \Rightarrow x=48\)

b,TH1:

\(\left\{{}\begin{matrix}x-2>0\\x +\dfrac{2}{3}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>2\\x>\dfrac{-2}{3}\end{matrix}\right.\Leftrightarrow x>2\)

TH2:

\(\left\{{}\begin{matrix}x-2< 0\\x+\dfrac{2}{3}< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 2\\x< \dfrac{-2}{3}\end{matrix}\right.\Leftrightarrow x< \dfrac{-2}{3}\)

=> Vậy 2<x< \(\dfrac{-2}{3}\)

c, TH1:

\(\dfrac{2}{3}x-1=0\\ \Rightarrow\dfrac{2}{3}x=1\\ \Rightarrow x=\dfrac{3}{2}\)

TH2:

\(\dfrac{3}{4}x+\dfrac{1}{2}=0\\ \Rightarrow\dfrac{3}{4}x=\dfrac{-1}{2}\\ \Rightarrow x=\dfrac{-2}{3}\)

Vậy x = \(\dfrac{3}{2};\dfrac{-2}{3}\)

a: \(-\dfrac{3}{2}x+\dfrac{1}{4}=\dfrac{1}{2}\left(x+1\right)\)

=>\(-\dfrac{3}{2}x+\dfrac{1}{4}=\dfrac{1}{2}x+\dfrac{1}{2}\)

=>\(-\dfrac{3}{2}x-\dfrac{1}{2}x=\dfrac{1}{2}-\dfrac{1}{4}\)

=>\(-2x=\dfrac{1}{4}\)

=>\(2x=-\dfrac{1}{4}\)

=>\(x=-\dfrac{1}{4}:2=-\dfrac{1}{8}\)

b: ĐKXĐ: x>=0

\(\left(6-3\sqrt{x}\right)\left(\left|x\right|-7\right)=0\)

=>\(\left\{{}\begin{matrix}6-3\sqrt{x}=0\\\left|x\right|-7=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3\sqrt{x}=6\\\left|x\right|=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=2\\\left[{}\begin{matrix}x=7\left(nhận\right)\\x=-7\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=7\left(nhận\right)\\x=4\left(nhận\right)\end{matrix}\right.\)

4 tháng 12 2023

bài nào cũng thấy Phước Thịnh :)

29 tháng 1 2022

Chia nhỏ ra

a: =>1/2x=7/2-2/3=21/6-4/6=17/6

=>x=17/3

b: =>2/3:x=-7-1/3=-22/3

=>x=2/3:(-22/3)=-1/11

c: =>1/3x+2/5x-2/5=0

=>11/15x=2/5

hay x=6/11

d: =>2x-3=0 hoặc 6-2x=0

=>x=3/2 hoặc x=3

16 tháng 6 2017

a, \(\dfrac{b}{\left(a-4\right)^2}.\sqrt{\dfrac{\left(a-4\right)^4}{b^2}}=\dfrac{b}{\left(a-4\right)^2}.\dfrac{\left(a-4\right)^2}{b}=1\)

b, Đặt \(B=\dfrac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)

\(\sqrt{x}=a,\sqrt{y}=b\)

Ta có: \(B=\dfrac{a^3-b^3}{a-b}=\dfrac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a-b}=a^2+ab+b^2\)

\(\Rightarrow B=x+\sqrt{xy}+y\)

Vậy...

c, \(\dfrac{a}{\left(b-2\right)^2}.\sqrt{\dfrac{\left(b-2\right)^4}{a^2}}=\dfrac{a}{\left(b-2\right)^2}.\dfrac{\left(b-2\right)^2}{a}=1\)

d, \(2x+\dfrac{\sqrt{1-6x+9x^2}}{3x-1}=2x+\dfrac{\sqrt{\left(3x-1\right)^2}}{3x-1}=2x+1\)

16 tháng 6 2017

a:b(a−4)2.√(a−4)4b2(b>0;a≠4)b(a−4)2.(a−4)4b2(b>0;a≠4)

= \(\dfrac{b}{\left(a-4\right)}.\dfrac{\sqrt{\left[\left(a-4\right)^2\right]^2}}{\sqrt{b^2}}\)

=\(\dfrac{b}{\left(a-4\right)^2}.\dfrac{\left(a-4\right)^2}{b}\)

= 1 ( nhân tử với tử mẫu với mẫu rồi rút gọn)

b:x√x−y√y√x−√y(x≥0;y≥0;x≠0)xx−yyx−y(x≥0;y≥0;x≠0)

=\(\dfrac{\sqrt{x^3}-\sqrt{y^3}}{\sqrt{x}-\sqrt{y}}\)

=\(\dfrac{\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3}{\sqrt{x}-\sqrt{y}}\)

=\(\dfrac{\left(\sqrt{x}-\sqrt{y}\right).\left(x+\sqrt{xy}+y\right)}{\sqrt{x}-\sqrt{y}}\)(áp dụng hằng đẳng thức )

= (x+\(\sqrt{xy}\)+y)

c:a(b−2)2.√(b−2)4a2(a>0;b≠2)a(b−2)2.(b−2)4a2(a>0;b≠2)

Tương tự câu a

d:x(y−3)2.√(y−3)2x2(x>0;y≠3)x(y−3)2.(y−3)2x2(x>0;y≠3)

tương tự câu a

e:2x +√1−6x+9x23x−1

= \(2x+\dfrac{\sqrt{\left(3x\right)^2-6x+1}}{3x-1}\)

= 2x+\(\dfrac{\sqrt{\left(3x-1\right)^2}}{3x-1}\)(hằng đẳng thức)

=2x+\(\dfrac{3x-1}{3x-1}\)

=2x+1

29 tháng 10 2021

3: \(\left|x-\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)

\(\Leftrightarrow\left|x-\dfrac{3}{4}\right|=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{4}=\dfrac{1}{2}\\x-\dfrac{3}{4}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=\dfrac{1}{4}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2021

1. ĐKXĐ: $x>0; x\neq 9$

\(A=\frac{\sqrt{x}+3+\sqrt{x}-3}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2\sqrt{x}}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2}{\sqrt{x}+3}\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2021

2. ĐKXĐ: $x\geq 0; x\neq 4$

\(B=\left[\frac{\sqrt{x}(\sqrt{x}+2)+\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}+\frac{6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}\right](\sqrt{x}+2)\)

\(=\frac{x+3\sqrt{x}-2+6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}.(\sqrt{x}+2)=\frac{x-4\sqrt{x}+4}{\sqrt{x}-2}=\frac{(\sqrt{x}-2)^2}{\sqrt{x}-2}=\sqrt{x}-2\)

a: =>2sin(x+pi/3)=-1

=>sin(x+pi/3)=-1/2

=>x+pi/3=-pi/6+k2pi hoặc x+pi/3=7/6pi+k2pi

=>x=-1/2pi+k2pi hoặc x=2/3pi+k2pi

b: =>2sin(x-30 độ)=-1

=>sin(x-30 độ)=-1/2

=>x-30 độ=-30 độ+k*360 độ hoặc x-30 độ=180 độ+30 độ+k*360 độ

=>x=k*360 độ hoặc x=240 độ+k*360 độ

c: =>2sin(x-pi/6)=-căn 3

=>sin(x-pi/6)=-căn 3/2

=>x-pi/6=-pi/3+k2pi hoặc x-pi/6=4/3pi+k2pi

=>x=-1/6pi+k2pi hoặc x=3/2pi+k2pi

d: =>2sin(x+10 độ)=-căn 3

=>sin(x+10 độ)=-căn 3/2

=>x+10 độ=-60 độ+k*360 độ hoặc x+10 độ=240 độ+k*360 độ

=>x=-70 độ+k*360 độ hoặc x=230 độ+k*360 độ

e: \(\Leftrightarrow2\cdot sin\left(x-15^0\right)=-\sqrt{2}\)

=>\(sin\left(x-15^0\right)=-\dfrac{\sqrt{2}}{2}\)

=>x-15 độ=-45 độ+k*360 độ hoặc x-15 độ=225 độ+k*360 độ

=>x=-30 độ+k*360 độ hoặc x=240 độ+k*360 độ

f: \(\Leftrightarrow sin\left(x-\dfrac{pi}{3}\right)=-\dfrac{1}{\sqrt{2}}\)

=>x-pi/3=-pi/4+k2pi hoặc x-pi/3=5/4pi+k2pi

=>x=pi/12+k2pi hoặc x=19/12pi+k2pi

12 tháng 9 2023

g) \(3+\sqrt[]{5}sin\left(x+\dfrac{\pi}{3}\right)=0\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{3}\right)=-\dfrac{3}{\sqrt[]{5}}\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{3}\right)=sin\left[arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)\right]\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{3}=arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)+k2\pi\\x+\dfrac{\pi}{3}=\pi-arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)-\dfrac{\pi}{3}+k2\pi\\x=\dfrac{2\pi}{3}-arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)+k2\pi\end{matrix}\right.\)

h) \(1+sin\left(x-30^o\right)=0\)

\(\Leftrightarrow sin\left(x-30^o\right)=-1\)

\(\Leftrightarrow sin\left(x-30^o\right)=sin\left(-90^o\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-30^o=-90^0+k360^o\\x-30^o=180^o+90^0+k360^o\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-60^0+k360^o\\x=300^0+k360^o\end{matrix}\right.\)

\(\Leftrightarrow x=-60^0+k360^o\)

a: =>x-3/4=1/6-1/2=1/6-3/6=-2/6=-1/3

=>x=-1/3+3/4=-4/12+9/12=5/12

b: =>x(1/2-5/6)=7/2

=>-1/3x=7/2

hay x=-21/2

c: (4-x)(3x+5)=0

=>4-x=0 hoặc 3x+5=0

=>x=4 hoặc x=-5/3

d: x/16=50/32

=>x/16=25/16

hay x=25

e: =>2x-3=-1/4-3/2=-1/4-6/4=-7/4

=>2x=-7/4+3=5/4

hay x=5/8

12 tháng 9 2023

a) \(A=\sqrt{28}-\sqrt{63}+\dfrac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)^2}\)

\(=\sqrt{2^2\cdot7}-\sqrt{3^2\cdot7}+\dfrac{\sqrt{7}\cdot\left(\sqrt{7}+1\right)}{\sqrt{7}}-\left|\sqrt{7}+1\right|\)

\(=2\sqrt{7}-3\sqrt{7}+\sqrt{7}+1-\sqrt{7}-1\)

\(=-\sqrt{7}\)

\(B=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-3}\right)\cdot\dfrac{4\sqrt{x}+12}{\sqrt{x}}\)

\(=\left[\dfrac{\sqrt{x}-3+\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]\cdot\dfrac{4\sqrt{x}+12}{\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}\)

\(=\dfrac{2\cdot4}{\sqrt{x}-3}\)

\(=\dfrac{8}{\sqrt{x}-3}\)

b) \(A>B\) khi 

\(\dfrac{8}{\sqrt{x}-3}< -\sqrt{7}\)

\(\Leftrightarrow8< -\sqrt{7x}+3\sqrt{7}\)

\(\Leftrightarrow x< \dfrac{\left(3\sqrt{7}-8\right)^2}{7}\)

AH
Akai Haruma
Giáo viên
25 tháng 7 2021

Bài 1:

a.

$|x+\frac{7}{4}|=\frac{1}{2}$

\(\Leftrightarrow \left[\begin{matrix} x+\frac{7}{4}=\frac{1}{2}\\ x+\frac{7}{4}=-\frac{1}{2}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{-5}{4}\\ x=\frac{-9}{4}\end{matrix}\right.\)

b. $|2x+1|-\frac{2}{5}=\frac{1}{3}$
$|2x+1|=\frac{1}{3}+\frac{2}{5}$

$|2x+1|=\frac{11}{15}$

\(\Leftrightarrow \left[\begin{matrix} 2x+1=\frac{11}{15}\\ 2x+1=\frac{-11}{15}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{-2}{15}\\ x=\frac{-13}{15}\end{matrix}\right.\)

c.

$3x(x+\frac{2}{3})=0$

\(\Leftrightarrow \left[\begin{matrix} 3x=0\\ x+\frac{2}{3}=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=0\\ x=\frac{-3}{2}\end{matrix}\right.\)

d.

$x+\frac{1}{3}=\frac{2}{5}-(\frac{-1}{3})=\frac{2}{5}+\frac{1}{3}$

$\Leftrightarrow x=\frac{2}{5}$

AH
Akai Haruma
Giáo viên
25 tháng 7 2021

Nguyễn Quý Trung:

\(x+\dfrac{1}{3}=\dfrac{2}{5}+\dfrac{1}{3}\)

Bạn bớt 2 vế đi 1/3 thì \(x=\dfrac{2}{5}\)