Cho x2+y2+xy=\(\dfrac{9}{2}\).Tìm giá trị lớn nhất ,nhỏ nhất của biểu thức :Q=x2+y2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+y^2+xy=3\)
Có \(x^2+y^2\ge2xy\) \(\Rightarrow3=x^2+y^2+xy\ge2xy+xy\) \(\Leftrightarrow xy\le1\)
\(x^2+y^2\ge-2xy\) \(\Rightarrow3=x^2+y^2+xy\ge-2xy+xy\) \(\Leftrightarrow-3\le xy\)
Đặt A= \(x^2+y^2-xy=\left(3-xy\right)-xy=3-2xy\)
mà \(-3\le xy\le1\) \(\Rightarrow9\ge3-2xy\ge1\)
=> minA=1 <=> \(\left\{{}\begin{matrix}xy=1\\x=y\end{matrix}\right.\) <=>x=y=1
maxA=9 <=>\(\left\{{}\begin{matrix}xy=-3\\x=-y\end{matrix}\right.\) <=>\(\left(x;y\right)=\left(\sqrt{3};-\sqrt{3}\right);\left(-\sqrt{3};\sqrt{3}\right)\)
Đặt \(P=x^2+y^2-xy\)
\(\Rightarrow\dfrac{P}{3}=\dfrac{x^2+y^2-xy}{3}=\dfrac{x^2+y^2-xy}{x^2+y^2+xy}\)
\(\dfrac{P}{3}=\dfrac{3x^2+3y^2-3xy}{3\left(x^2+y^2+xy\right)}=\dfrac{x^2+y^2+xy+2\left(x^2+y^2-2xy\right)}{3\left(x^2+y^2+xy\right)}\)
\(\dfrac{P}{3}=\dfrac{1}{3}+\dfrac{2\left(x-y\right)^2}{3\left(x^2+y^2+xy\right)}\ge\dfrac{1}{3}\Rightarrow P\ge1\)
\(P_{min}=1\) khi \(x=y=1\)
\(\dfrac{P}{3}=\dfrac{x^2+y^2-xy}{x^2+y^2+xy}=\dfrac{3\left(x^2+y^2+xy\right)-2\left(x^2+y^2+2xy\right)}{x^2+y^2+xy}=3-\dfrac{2\left(x+y\right)^2}{x^2+y^2+xy}\le3\)
\(\Rightarrow P\le9\)
\(P_{max}=9\) khi \(\left(x;y\right)=\left(\sqrt{3};-\sqrt{3}\right);\left(-\sqrt{3};\sqrt{3}\right)\)
1:
=x^2-6x+9-4=(x-3)^2-4>=-4
Dấu = xảy ra khi x=3
3: =-y^2-4y-4+13
=-(y+2)^2+13<=13
Dấu = xảy ra khi y=-2
4: D=x^2-8>=-8
Dấu = xảy ra khi x=0
Ta có: 2 x 2 + 1 2 ≥ 2 x ; 2 y 2 + 1 2 ≥ 2 y và x 2 + y 2 ≥ 2 x y
Cộng vế với vế các BĐT trên ta được:
3 x 2 + y 2 + 1 ≥ 2 x + y + x y = 5 2
=> A = x 2 + y 2 ≥ 1 2
Từ đó tìm được A m i n = 1 2 <=> x = y = 1 2
Đáp án D
Cho x,y > 0 thỏa mãn 2 ( x 2 + y 2 ) + x y = ( x + y ) ( 2 + x y ) ⇔ 2 ( x + y ) 2 - ( 2 + x y ) ( x + y ) - 3 x y = 0 (*)
Đặt x + y = u x y = v ta đc PT bậc II: 2 u 2 - ( v + 2 ) u - 3 = 0 gải ra ta được u = v + 2 + v 2 + 28 v + 4 4
Ta có P = 4 ( x 3 y 3 + y 3 x 3 ) - 9 ( x 2 y 2 + y 2 x 2 ) = 4 ( x y + y x ) 3 - 9 ( x y + y x ) 2 - 12 ( x y + y x ) + 18 , đặt t = ( x y + y x ) , ( t ≥ 2 ) ⇒ P = 4 t 3 - 9 t 2 - 12 t + 18 ; P ' = 6 ( 2 t 2 - 3 t + 2 ) ≥ 0 với ∀ t ≥ 2 ⇒ M i n P = P ( t 0 ) trong đó t 0 = m i n t = m i n ( x y + y x ) với x,y thỏa mãn điều kiện (*).
Ta có :
t = ( x y + y x ) = ( x + y ) 2 x y - 2 = u 2 v - 2 = ( v + 2 + v 2 + 28 v + 4 ) 2 16 v - 2 = 1 16 ( v + 2 v + v + 4 v + 28 ) 2 - 2 ≥ 1 16 ( 2 2 + 32 ) 2 - 2 = 5 2
Vậy m i n P = P ( 5 2 ) = 4 . ( 5 2 ) 2 - 9 ( 5 2 ) 2 - 12 . 5 2 + 18 = - 23 4
Áp dụng BĐT cói cho 2 số ko âm ta có
X^2+y^2 >= 2 .căn x^2 .y^2 = 2.xy= 2.6 =12
Vậy P min =12 dấu = xảy ra khi x^2=y^2 <=> x=y
( thông cảm mình gõ mũ ko đc )
Bài 1:
\(A=x^2+6x+9+x^2-10x+25\)
\(=2x^2+4x+34\)
\(=2\left(x^2+2x+17\right)\)
\(=2\left(x+1\right)^2+32>=32\forall x\)
Dấu '=' xảy ra khi x=-1
Lời giải:
a. Áp dụng BĐT Cô-si:
$x^4+9\geq 6x^2$
$y^4+9\geq 6y^2$
$\Rightarrow x^4+y^4+18\geq 6(x^2+y^2)$
$A+18\geq 36$
$A\geq 18$
Vậy GTNN của $A$ là $18$ khi $x^2=y^2=3$
b.
$(x-y)^2\geq 0$
$\Leftrightarrow x^2+y^2\geq 2xy$
$\Leftrightarrow 2(x^2+y^2)\geq (x+y)^2$
$\Leftrightarrow 12\geq (x+y)^2$
$\Rightarrow B=x+y\leq \sqrt{12}$. Vậy $B$ max bằng $\sqrt{12}$ khi $x=y=\sqrt{3}$
$(x-y)^2\geq 0$
$\Leftrightarrow x^2+y^2\geq 2xy$
$\Leftrightarrow 6\geq 2C$
$\Leftrightarrow C\leq 3$. Vậy $C_{\max}=3$. Giá trị này đạt tại $x=y=-\sqrt{3}$
* Tìm giá trị lớn nhất :
\(x^{2}\) + \(y^{2}\) +xy = \(\dfrac {9}{2}\)
\(\Leftrightarrow\) \(2x^{2}\) + \(2y^{2}\) + 2xy = 9
\(\Leftrightarrow\) \(x^{2}\) +\( y{2} = 9- ( x+y)^{2} \le 9 \)
Dấu " = " xảy ra khi và chỉ khi x= \(\sqrt{4,5}\) ; y =- \(\sqrt{4,5}\) hoặc ngược lại
Vậy Max A= \(x^2 + y^2 =9\) \(\Leftrightarrow\)x= \(\sqrt{4,5}\) ; y =- \(\sqrt{4,5}\) hoặc ngược lại
* Tìm giá trị nhỏ nhất :
\(x^2 + y^2 + xy = \dfrac {9}{2} \)
\(\Leftrightarrow\)\( 2x^{2} + 2y^{2} + 2xy = 9\)
\(\Leftrightarrow\) \(3 ( x^2 + y^2 ) = 9 + ( x-y ) ^2 \ge 9 \)
\(\Leftrightarrow\) \(A = x^2 + y^2 \ge \)3 Dấu " = " xảy ra \(\Leftrightarrow\) \( \begin{cases} x-y=0\\x^2 + y^2 = 3 \end{cases}\) \(\Leftrightarrow\) x=y= \(\sqrt{1,5}\)
Vậy Min A = 3 \(\Leftrightarrow\)x=y= \(\sqrt{1,5}\)
* Tìm giá trị lớn nhất :
x^{2} + y^{2) +xy = \dfrac {9}{2}
\(\Leftrightarrow\) 2x^{2} + 2y^{2} + 2xy = 9
\(\Leftrightarrow\) x^{2} + y{2} = 9- ( x+y)^{2} \le 9
Dấu " = " xảy ra khi và chỉ khi x= \(\sqrt{4,5}\) ; y =- \(\sqrt{4,5}\) hoặc ngược lại
Vậy Max A= x^2 + y^2 =9 \(\Leftrightarrow\)x= \(\sqrt{4,5}\) ; y =- \(\sqrt{4,5}\) hoặc ngược lại
* Tìm giá trị nhỏ nhất :
x^2 + y^2 + xy = \dfrac {9}{2}
\(\Leftrightarrow\) 2x^{2} + 2y^{2} + 2xy = 9
\(\Leftrightarrow\) 3 ( x^2 + y^2 ) = 9 + ( x- y ) ^2 \ge 9
\(\Leftrightarrow\) A = x^2 + y^2 \ge 3 Dấu " = " xảy ra \(\Leftrightarrow\) \( \begin{cases} x-y=0\\x^2 + y^2 = 3 \end{cases}\) \(\Leftrightarrow\) x=y= \(\sqrt{1,5}\)
Vậy Min A = 3 \(\Leftrightarrow\)x=y= \(\sqrt{1,5}\)