Tìm bốn số tự nhiên có tổng là 2002, biết rằng nếu xóa chữ số hàng đơn vị của số thứ nhất được số thứ hai, xóa chữ số hàng đơn vị của số thứ hai được số thứ ba, xóa chữ số hàng đơn vị của số thứ ba được số thứ bốn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi a là số thứ 4 có 1 chữ số
Số thứ 3 bằng a x10 +b hay ab ﴾số có 2 chữ số﴿
Số thứ 2 bằng ab x10 +c hay abc ﴾số có 3 chữ số﴿
Số thứ 1 bằng abc x10 +d hay abcd ﴾số có 4 chữ số﴿
Ta có: abcd + abc + ab + a =2235
hay 1111a + 111b + 11c + d = 2235
=>a=2 (vì a=3 thì lớn hơn 2235, a=1 thì b,c,d lớn nhất cũng nhỏ hơn 2235)
2222+111b+11c+d = 2235
=>b=0 (vì b=1 thì lớn hơn 2235)
2222+000+11c+d=2235
=>c=1 (vì c=2 thì lớn hơn và c=0 thì bé hơn 2235)
2222+000+11+d=2235
=>d=2
Số thứ nhất: 2012
Gọi a là số thứ 4 có 1 chữ số
Số thứ 3 bằng a x 10 + b hay ab ( số có 2 chữ số)
Số thứ 2 bằng ab x10 +c hay abc ( số có 3 chữ số )
Số thứ 1 bằng abc x10 +d hay abcd ( số có 4 chữ số )
Ta có:abcd + abc + ab + a = 2235
hay1111a + 111b + 11c + d = 2235
=>a=2 ( vì a = 3 thì lớn hơn 2235, a = 1 thì b,c,d lớn nhất cũng nhỏ hơn 2235 )
2222 + 111b + 11c + d = 2235
=>b = 0 ( vì b=1 thì lớn hơn 2235 )
2222+000+11c+d=2235
=>c = 1 ( vì c=2 thì lớn hơn và c=0 thì bé hơn 2235 )
2222+000+11+d=2235
=>d = 2
Số thứ nhất:2012
Ta có abcd + abc + ab + a = 2235
Đặt cột dọc lí luận để tìm a; b; c; d (a lí luận trước: a=1 hoặc a = 2)
..................
Số thứ nhất là: 2012
ĐS: 2012
Gọi a là số thứ 4 có 1 chữ số
Số thứ 3 bằng a x10 +b hay ab (số có 2 chữ số)
Số thứ 2 bằng ab x10 +c hay abc (số có 3 chữ số)
Số thứ 1 bằng abc x10 +d hay abcd (số có 4 chữ số)
Ta có: abcd + abc + ab + a =2235
hay 1111a + 111b + 11c + d = 2235
=>a=2 (vì a=3 thì lớn hơn 2235, a=1 thì b,c,d lớn nhất cũng nhỏ hơn 2235)
2222+111b+11c+d = 2235
=>b=0 (vì b=1 thì lớn hơn 2235)
2222+000+11c+d=2235
=>c=1 (vì c=2 thì lớn hơn và c=0 thì bé hơn 2235)
2222+000+11+d=2235
=>d=2
Số thứ nhất: 2012
Gọi a là số thứ 4 có 1 chữ số Số thứ 3 bằng a x10 +b hay ab (số có 2 chữ số) Số thứ 2 bằng ab x10 +c hay abc (số có 3 chữ số) Số thứ 1 bằng abc x10 +d hay abcd (số có 4 chữ số) Ta có: abcd + abc + ab + a =2235 hay 1111a + 111b + 11c + d = 2235 =>a=2 (vì a=3 thì lớn hơn 2235, a=1 thì b,c,d lớn nhất cũng nhỏ hơn 2235) 2222+111b+11c+d = 2235 =>b=0 (vì b=1 thì lớn hơn 2235) 2222+000+11c+d=2235 =>c=1 (vì c=2 thì lớn hơn và c=0 thì bé hơn 2235) 2222+000+11+d=2235 =>d=2 Số thứ nhất: 2012
Gọi a là số thứ 4 có 1 chữ số
Số thứ 3 bằng a x10 +b hay ab (số có 2 chữ số)
Số thứ 2 bằng ab x10 +c hay abc (số có 3 chữ số)
Số thứ 1 bằng abc x10 +d hay abcd (số có 4 chữ số)
Ta có: abcd + abc + ab + a =2235
hay 1111a + 111b + 11c + d = 2235
=>a=2 (vì a=3 thì lớn hơn 2235, a=1 thì b,c,d lớn nhất cũng nhỏ hơn 2235)
2222+111b+11c+d = 2235
=>b=0 (vì b=1 thì lớn hơn 2235)
2222+000+11c+d=2235
=>c=1 (vì c=2 thì lớn hơn và c=0 thì bé hơn 2235)
2222+000+11+d=2235
=>d=2
Số thứ nhất: 2012
tham khảo ở đây
Câu hỏi của nguyễn hoàng mỹ dân - Toán lớp 5 - OLMBài giải: Số thứ nhất không thể nhiều hơn 4 chữ số vì tổng 4 số bằng 2003. Nếu số thứ nhất có ít hơn 4 chữ số thì sẽ không tồn tại số thứ tư. Vậy số thứ nhất phải có 4 chữ số.
Gọi số thứ nhất là abcd (a > 0, a, b, c, d < 10). Số thứ hai, số thứ ba, số thứ tư lần lượt sẽ là : abc ; ab ; a. Theo bài ra ta có phép tính:
abcd + abc + ab + a = 2003.
Theo phân tích cấu tạo số ta có : aaaa + bbb + cc + d = 2003 (*)
Từ phép tính (*) ta có a < 2, nên a = 1. Thay a = 1 vào (*) ta được:
1111 + bbb + cc + d = 2003.
bbb + cc + d = 2003 - 1111
bbb + cc + d = 892 (**)
b > 7 vì nếu b nhỏ hơn hoặc bằng 7 thì bbb + cc + d nhỏ hơn 892 ; b < 9 vì nếu b = 9 thì bbb = 999 > 892. Suy ra b chỉ có thể bằng 8.
Thay b = 8 vào (**) ta được:
888 + cc + d = 892
cc + d = 892 - 888
cc + d = 4
Từ đây suy ra c chỉ có thể bằng 0 và d = 4.
Vậy số thứ nhất là 1804, số thứ hai là 180, số thứ ba là 18 và số thứ tư là 1.
Thử lại: 1804 + 180 + 18 + 1 = 2003 (đúng)
giải thế này đúng ko các cậu
Số thứ nhất không thể nhiều hơn 4 chữ số vì tổng 4 số bằng 2003. Nếu số thứ nhất có ít hơn 4 chữ số thì sẽ không tồn tại số thứ tư. Vậy số thứ nhất phải có 4 chữ số.
Gọi số thứ nhất là abcd (a > 0, a, b, c, d < 10). Số thứ hai, số thứ ba, số thứ tư lần lượt sẽ là : abc ; ab ; a.
Theo bài ra ta có phép tính:
abcd + abc + ab + a = 2003.
Theo phân tích cấu tạo số ta có : aaaa + bbb + cc + d = 2003 (*)
Từ phép tính (*) ta có a < 2, nên a = 1. Thay a = 1 vào (*) ta được :
1111 + bbb + cc + d = 2003.
bbb + cc + d = 2003 - 1111
bbb + cc + d = 892 (**)
b > 7 vì nếu b nhỏ hơn hoặc bằng 7 thì bbb + cc + d nhỏ hơn 892 ; b < 9 vì nếu b = 9 thì bbb = 999 > 892. Suy ra b chỉ có thể bằng 8.
Thay b = 8 vào (**) ta được :
888 + cc + d = 892
cc + d = 892 - 888
cc + d = 4
Từ đây suy ra c chỉ có thể bằng 0 và d = 4.
Vậy số thứ nhất là 1804, số thứ hai là 180, số thứ ba là 18 và số thứ tư là 1.
Thử lại : 1804 + 180 + 18 + 1 = 2003 (đúng)
Số thứ nhất không thể nhiều hơn 4 chữ số vì tổng 4 số bằng 2003. Nếu số thứ nhất có ít hơn 4 chữ số thì sẽ không tồn tại số thứ tư. Vậy số thứ nhất phải có 4 chữ số.
Gọi số thứ nhất là abcd (a > 0, a, b, c, d < 10). Số thứ hai, số thứ ba, số thứ tư lần lượt sẽ là : abc ; ab ; a. Theo bài ra ta có phép tính:
abcd + abc + ab + a = 2003.
Theo phân tích cấu tạo số ta có : aaaa + bbb + cc + d = 2003 (*)
Từ phép tính (*) ta có a < 2, nên a = 1. Thay a = 1 vào (*) ta được:
1111 + bbb + cc + d = 2003.
bbb + cc + d = 2003 - 1111
bbb + cc + d = 892 (**)
b > 7 vì nếu b nhỏ hơn hoặc bằng 7 thì bbb + cc + d nhỏ hơn 892 ; b < 9 vì nếu b = 9 thì bbb = 999 > 892. Suy ra b chỉ có thể bằng 8.
Thay b = 8 vào (**) ta được:
888 + cc + d = 892
cc + d = 892 - 888
cc + d = 4
Từ đây suy ra c chỉ có thể bằng 0 và d = 4.
Vậy số thứ nhất là 1804, số thứ hai là 180, số thứ ba là 18 và số thứ tư là 1.
Thử lại: 1804 + 180 + 18 + 1 = 2003 (đúng)
Bài giải :Số thứ nhất không thể nhiều hơn 4 chữ số vì tổng 4 số bằng 2003. Nếu số thứ nhất có ít hơn 4 chữ số thì sẽ không tồn tại số thứ tư. Vậy số thứ nhất phải có 4 chữ số.
Gọi số thứ nhất là abcd (a > 0, a, b, c, d < 10). Số thứ hai, số thứ ba, số thứ tư lần lượt sẽ là : abc ; ab ; a. Theo bài ra ta có phép tính:
abcd + abc + ab + a = 2003.
Theo phân tích cấu tạo số ta có : aaaa + bbb + cc + d = 2003 (*)
Từ phép tính (*) ta có a < 2, nên a = 1. Thay a = 1 vào (*) ta được:
1111 + bbb + cc + d = 2003.
bbb + cc + d = 2003 - 1111
bbb + cc + d = 892 (**)
b > 7 vì nếu b nhỏ hơn hoặc bằng 7 thì bbb + cc + d nhỏ hơn 892 ; b < 9 vì nếu b = 9 thì bbb = 999 > 892. Suy ra b chỉ có thể bằng 8.
Thay b = 8 vào (**) ta được:
888 + cc + d = 892
cc + d = 892 - 888
cc + d = 4
Từ đây suy ra c chỉ có thể bằng 0 và d = 4.
Vậy số thứ nhất là 1804, số thứ hai là 180, số thứ ba là 18 và số thứ tư là 1.
Thử lại: 1804 + 180 + 18 + 1 = 2003 (đúng) Chúc bn học tốt nha
Số thứ nhất không thể nhiều hơn 4 chữ số vì tổng 4 chữ số bằng 2003. Nếu số thứ nhăt có ít hơn 4 chữ số thì sẽ không tồn tại số thứ 4. Vậy số thứ nhất phải có 4 chữ số. Gọi số thứ nhất là abcd (a>0, a,b,c,d < 10) . Số thứ hai, số thứ ba, số thứ tư lần lượt sẽ là: abc; ab; a. Theo bài ta có phép tính:
abcd + abc + ab + a = 2003.
Theo phân tích cấu tạo số ta có: aaaa + bbb + cc + d = 2003 (1)
Từ (1) ta có a < 2 nên a = 1. Thay a = 1 vào (1) ta được:
1111 + bbb + cc + d = 2003
bbb + cc + d = 2003 - 1111
bbb + cc +d = 892 (2)
b > 7 vì nếu b nhỏ hơn hoặc bằng 7 thì bbb + cc + d < 892; b < 9 vì nếu b = 9 thì bbb = 999 > 892. Suy ra b chỉ có thể bằng 8.
Thay b bằng 8 vào (2) ta được:
888 + cc + d = 892
cc + d = 892 - 888
cc + d = 4
Từ đây suy ra c chỉ có thể bằng 0 và d = 4
Vậy số thứ nhất là 1804, số thứ hai là 180, số thứ ba là 18 và số thứ tư là 1
Thử lại : 1804 + 180 + 18 + 1 = 2003 (đúng)
thôi .com !