Cho tam giác ABC, M là trung điểm của BC. Gọi H và K theo thứ tự là hình chiếu của B vÀ C trên AM. Chứng minh CH song song với BK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác BHM và tam giác CKM lần lượt vuông tại H và K có:
BM=MC(M là trung điểm BC)
\(\widehat{BMH}=\widehat{CMK}\)(đối đỉnh)
=> ΔBHM=ΔCKM(ch-gn)
=> \(\widehat{HBM}=\widehat{KCM}\)
Mà 2 góc này so le trong
=> BH//CK
Mà BH=CK(ΔBHM=ΔCKM)
=> BHCK là hình bình hành
=> CH//BK
Bài 2:
Dễ dàng chứng minh \(\Delta\)BEC = \(\Delta\)AEH (c.g.c) và \(\Delta\)CDB = \(\Delta\)ADK
Suy ra HA = BC. và KA = BC từ đó suy ra HA = KA (1)
Do ED là đường trung bình tam giác BAK nên ED // AK (2)
Do ED là đường trung bình tam giác HCA nên ED // AH (3)
Từ (2) và (3) theo tiên đề Ơclit suy ra A, H, K thẳng hàng (4)
Từ (1) và (4) suy ra đpcm.
Bài 1:
Hình như hơi dư thừa nhỉ? BHCK là hình bình hành thì hiển nhiên CH//BK rồi mà. Đúng hay sai thì tùy!
Giải
Dễ dàng chứng minh \(\Delta\)BMH = \(\Delta\)CMK (cạnh huyền - góc nhọn)
Suy ra ^MBH = ^MCK. Mà hai góc này ở vị trị so le trong nên BH // CK (1) và MH = MK
Xét \(\Delta\)BMK và \(\Delta\)CMH có:
MH = MK (chứng minh trên)
^BMK = ^HMC
BM = CM (do M là trung điểm BC)
Suy ra \(\Delta\)BMK = \(\Delta\)CMH (c.g.c)
Suy ra ^MBK = ^MCH. Mà hai góc này ở vị trí so le trong nên BK // CH (2)
Từ (1) và (2) suy ra tứ giác BHCK là hình bình hành (đpcm)
a: Xét tứ giác ADHE có
\(\widehat{EAD}=\widehat{AEH}=\widehat{ADH}=90^0\)
Do đó: ADHE là hình chữ nhật
Suy ra: AH=DE
a: Xét ΔIDC và ΔIEC có
góc IDC=góc IEC
IC chung
góc C1=góc C2
=>ΔIDC=ΔIEC
=>DC=EC
=>ΔDCE cân tại C
b: MN//AC
=>góc DNM=góc DEC=góc NDM
=>ΔDMN cân tại M
=>MD=MN
=>MN=AE
Xét tứ giác AEMN có
AE//MN
AE=MN
=>AEMN là hbh
=>AM cắt EN tại trung điểm của mỗi đường
=>K là trung điểm của AM
Xét ΔMHB vuông tại H và ΔMKC vuông tại K có
MB=MC
\(\widehat{HMB}=\widehat{KMC}\)
Do đó: ΔMHB=ΔMKC
Suy ra: MH=MK
hay M là trung điểm của HK
Xét tứ giác BHCK có
M là trung điểm của BC
M là trung điểm của HK
Do đó: BHCK là hình bình hành
Suy ra: CH//BK