Cho đoạn AB =2a. Trên cùng một mặt phẳng bờ AB ta vẽ đường tròn (O) tiếp xúc AB tại A, vẽ đường tròn (O') tiếp xúc AB tại B và hai đường tròn này tiếp xúc ngoài với nhau. Gọi R và R' lần lượt là bán kính của đường tròn (O) và (O'). Chứng minh R.R'=a2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình :
lời giải :
a) MN cắt ( O ) tại C
dễ thấy O'N vuông góc với AB
Ta có : \(\Delta O'MN\)cân tại O' nên \(\widehat{O'MN}=\widehat{O'NM}\)( 1 )
Mà \(\Delta OMC\)cân tại O nên \(\widehat{OMC}=\widehat{OCM}\) ( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(\widehat{O'NM}=\widehat{OCM}\)nên O'N // OC
\(\Rightarrow OC\perp AB\), suy ra C cố định
b) vẽ bán kính \(OC\perp AB\) ( C và M thuộc hai nửa mặt phẳng đối nhau bờ AB )
CM cắt AB tại N
đường thẳng qua N và song song với OC cắt OM tại O'
Dựng đường tròn ( O';O'M )
đó là đường tròn phải dựng
b) Gọi I là tâm của đường tròn đường kính CD.
Tứ giác CABD là hình thang vuông (AC ⊥ AB;BD ⊥ AB) có OI là đường trung bình
⇒ OI // AC ; mà AC ⊥ AB ⇒ OI ⊥ AB tại O
Vậy AB tiếp xúc với đường tròn đường kính CD.
a: Xét tứ giác PAOM có
góc PAO+góc PMO=180 độ
=>PAOM là tứ giác nội tiếp
b: Xét (O) có
PA,PM là tiếp tuyến
nên PA=PM và OP là phân giác của góc MOA(1)
mà OA=OM
nên OP là trung trực của AM
=>OP vuông góc AM
Xét (O) có
QM,QB là tiếp tuyến
nên QM=QB và OQ là phân giác của góc MOB(2)
mà OM=OB
nên OQ là trung trực của MB
=>OQ vuông góc MB tại K
Từ (1), (2) suy ra góc POQ=1/2*180=90 độ
Xét tứ giác MIOK có
góc MIO=góc MKO=góc IOK=90 độ
=>MIOK là hình chữ nhật
Xét ΔOPQ vuông tại O có OM là đường cao
nên MP*MQ=OM^2=R^2
=>AP*QB=OM^2=R^2 ko đổi
a) CE và EB là 2 tiếp tuyến cắt nhau tại E
⇒ EC = EB và CB ⊥ OE
Tương tự, DC và DA là 2 tiếp tuyến cắt nhau tại D
⇒ DC = DA và AC ⊥ OD
Khi đó: AD + BE = DC + EC = DE
C là giao điểm 2 tiếp tuyến tại A và M \(\Rightarrow OC\) là trung trực AM
\(\Rightarrow E\) là trung điểm AM
Tương tự ta có OD là trung trực BM \(\Rightarrow F\) là trung điểm BM
\(\Rightarrow EF\) là đường trung bình tam giác ABM
\(\Rightarrow EF||AB\Rightarrow ONEF\) là hình thang (1)
Lại có O là trung điểm AB \(\Rightarrow OF\) là đường trung bình tam giác ABM
\(\Rightarrow OF=\dfrac{1}{2}AM=AE\)
Mà \(OF||AE\) (cùng vuông góc BM)
\(\Rightarrow AEFO\) là hình bình hành \(\Rightarrow\widehat{OFE}=\widehat{OAE}\)
Mà \(EN=AE=\dfrac{1}{2}AM\Rightarrow\Delta AEN\) cân tại E \(\Rightarrow\widehat{OAE}=\widehat{ANE}\)
\(\widehat{ANE}+\widehat{ONE}=180^0\Rightarrow\widehat{OFE}+\widehat{ONE}=180^0\)
Lại có \(\widehat{ONE}+\widehat{NEF}=180^0\) (2 góc trong cùng phía)
\(\Rightarrow\widehat{OFE}=\widehat{NEF}\)
\(\Rightarrow ONEF\) là hình thang cân
c) Xét tam giác DOC vuông tại C, CM là đường cao có:
OM.OD = OC 2 = R 2
Xét tam giác EOC vuông tại C, CN là đường cao có:
ON.OE = OC 2 = R 2
Khi đó: OM.OD + ON.OE = 2 R 2
Vậy OM.OD + ON.OE không đổi
Theo tính chất tiếp tuyến, ta có:
Ax ⊥ AB
By ⊥ AB
Suy ra: Ax // By hay AC // BD
Suy ra tứ giác ABDC là hình thang
Gọi I là trung điểm của CD
Khi đó OI là đường trung bình của hình thang ABDC
Suy ra: OI // AC ⇒ OI ⊥ AB
Suy ra: IC = ID = IO = (1/2).CD (tính chất tam giác vuông)
Suy ra I là tâm đường tròn đường kính CD. Khi đó O nằm trên đường tròn tâm I đường kính CD và IO vuông góc với AB tại O.
Vậy đường tròn có đường kính CD tiếp xúc với AB tại O.