Cho a=n^3+2n và b=n^4+3n^2+1.Với mỗi n thuộc N,hãy tìm ước chung lớn nhất của a và b.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của shushi kaka - Toán lớp 6 - Học toán với OnlineMath
Đặt: \(d=\left(n^3+2n;n^4+3n^2+1\right)\)
=> \(\hept{\begin{cases}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{cases}\Rightarrow}\hept{\begin{cases}n^4+2n^2=n\left(n^3+2n\right)⋮d\\n^4+3n^2+1⋮d\end{cases}}\)
=> \(\left(n^4+3n^2+1\right)-\left(n^4+2n^2\right)⋮d\)
=> \(n^2+1⋮d\)
=> \(n\left(n^2+1\right)⋮d\)
=> \(n^3+n⋮d\)
=> \(\left(n^3+2n\right)-\left(n^3+n\right)⋮d\)
=> \(n⋮d\)mà \(n^4+3n^2+1⋮d\)
=> \(1⋮d\)
=> d = 1
=> \(\left(a;b\right)=1\)
câu 1 :
Trong một số trường hợp, có thể sử dụng mối quan hệ đặc biệt giữa ƯCLN, BCNN và tích của hai số nguyên dương a, b, đó là : ab = (a, b).[a, b], trong đó (a, b) là ƯCLN và [a, b] là BCNN của a và b. Việc chứng minh hệ thức này khụng khú :
Theo định nghĩa ƯCLN, gọi d = (a, b) => a = md ; b = nd với m, n thuộc Z+ ; (m, n) = 1 (*)
Từ (*) => ab = mnd2 ; [a, b] = mnd
=> (a, b).[a, b] = d.(mnd) = mnd2 = ab
=> ab = (a, b).[a, b] . (**)
:v
Cấm bình luận!