K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2020

?????????????????????????????

2 tháng 2 2018

Cậu tự vẽ hình nha!!!!!! :D

a) Xét tam giác OHM và tam giác OKM:

HM = MK ( gt )

góc MHO = góc OKM (=90o)

cạnh OM : cạnh chung

=> tam giác OHM = tam giác OKM ( ch.cgv)

=> HOM = MOK ( 2 góc t.ứ)

Suy ra OM là tia p.g của góc xOy=> M thc p.g góc xOy

b) mk gợi ý nha: ^~^

Xét 2 tam giác AOM và BOM: => Tam giác AOM= BOM (c.g.c)

=> góc AOM = BOM ( 2 góc t.ứ)

=>OM là tia p.g của góc AOB

=>

2 tháng 2 2018

mọi người trả lời nhanh nha mk đang cần gấp

3 tháng 12 2021

Gọi giao điểm của MN và Ox là điểm A; giao điểm của MN và Oy là điểm B.

Ta có: N là điểm đối xứng với M qua Ox (gt).

           O \(\in\) Ox.

=> \(\left\{{}\begin{matrix}OA\perp MN.\\\text{ON = OM.(1)}\end{matrix}\right.\) 

Ta có: P là điểm đối xứng với M qua Oy (gt).

           O \(\in\) Oy.

=> \(\left\{{}\begin{matrix}OB\perp MP.\\\text{OM = OP.(2)}\end{matrix}\right.\)

Từ (1) và (2) => OP = ON = OM.

Xét tam giác NOM có: ON = OM (cmt).

=> Tam giác NOM cân tại O.

Mà OA là đường cao (do OA vuông góc MN).

=> OA là phân giác của ^NOM (Tính chất các đường trong tam giác cân).

=> ^NOA = ^AOM.

Xét tam giác MOP có: OP = OM (cmt).

=> Tam giác MOM cân tại O.

Mà OB là đường cao (do OB vuông góc MP).

=> OB là phân giác của ^MOP (Tính chất các đường trong tam giác cân).

=> ^MOB = ^BOP.

Ta có: ^NOA + ^AOM + ^MOB + ^BOP.

=  2. ^AOM + 2. ^MOB.

= 2. (^AOM + ^MOB).

= 2. ^AOB.

= 2. 90o = 180o.

=> 3 điểm N; O; P thẳng hàng.

Mà OP = ON (cmt).

=> O là trung điểm của NP.

=> P và N đối xứng nhau qua O (đpcm).

 

 

21 tháng 9 2016

mình biết nhưng lười ve hình quá

Thông cảm

Có j ủng hộ mik nhea

24 tháng 9 2016

bài nì mk chưa hc, về số hc mk hc đc nhìu hơn, hy à

 

24 tháng 9 2016

uk

3 tháng 2 2017

O x y A B C D E F I H K M
Theo đề bài ta có I là trung điểm đoạn EF => I thuộc tia phân giác góc xOy => góc EOI = góc FOI
Cho H,K là chân các đường vuông góc hạ từ M xuống các tia Ox, Oy => \(MH⊥Ox;MK⊥Oy\)(1)
ta có : góc MHO = góc MKO = 900
=> tứ giác OHMK nội tiếp  => góc MOK = góc MHK(cùng chắn cung MK),góc  MOH = góc HKM (cùng chắn cung HM)
Mà góc MOK = góc MOH (cmt) nên góc MHK = góc HKM => tam giác MHK cân tại M => MH = MK (2)
Từ (1) và (2) => M thuộc đường phân giác của góc xOy
Vì I và M đều thuộc tia phân giác của góc xOy nên I,OM thẳng hàng
p/s còn nhiều cách khác .vd: (dùng hình vẽ trên) : chứng minh 2 tam giác HMO = tam giác KMO( tam giác vuông có cạnh OM chung và góc HOM = góc MOK) => MH=MK -> phần sau làm tương tự.............[cách này ngắn hơn nhưng không dùng cho lớp 9 HKII]

1 tháng 2 2017

Chưa học

15 tháng 8 2021

giải giùm mình vì đang cần lắm!!!!