***Cho tam giác ABC với J là trung điểm của AB, I là trung điểm JC. M,N là hai điểm thay đổi trên mặt phẳng sao cho \(\overrightarrow{MN}=\overrightarrow{MA}+\overrightarrow{MB}+2\overrightarrow{MC}\)
Chứng minh M, N, I thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chắc chắn là đề bài sai rồi
Vế trái là 1 đại lượng vô hướng
Vế phải là 1 đại lượng có hướng (vecto)
Hai vế không thể bằng nhau được
MN là đường trung bình của tam giác ABC
\(\Rightarrow\overrightarrow{MN}=\dfrac{1}{2}\overrightarrow{BC}=\dfrac{1}{2}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)=-\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\)
Từ giả thiết:
\(\overrightarrow{KM}=-2\overrightarrow{KN}=-2\left(\overrightarrow{KM}+\overrightarrow{MN}\right)\)
\(\Rightarrow3\overrightarrow{KM}=2\overrightarrow{NM}\Rightarrow\overrightarrow{KM}=\dfrac{2}{3}\overrightarrow{NM}\)
\(\Rightarrow\overrightarrow{MK}=\dfrac{2}{3}\overrightarrow{MN}=\dfrac{2}{3}\left(-\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\right)=-\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)
M là trung điểm AB \(\Rightarrow\overrightarrow{AM}=\dfrac{1}{2}\overrightarrow{AB}\)
Do đó:
\(\overrightarrow{AK}=\overrightarrow{AM}+\overrightarrow{MK}=\dfrac{1}{2}\overrightarrow{AB}-\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}=\dfrac{1}{6}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)
\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=\overrightarrow{AB}+\overrightarrow{AD}\)
\(\Leftrightarrow\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{MO}+\overrightarrow{OC}+\overrightarrow{MO}+\overrightarrow{OD}=\overrightarrow{AC}\)
\(\Leftrightarrow4\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=2\overrightarrow{AO}\)
\(\Leftrightarrow4\overrightarrow{MO}=2\overrightarrow{OA}\)
\(\Leftrightarrow\overrightarrow{MO}=\dfrac{1}{2}\overrightarrow{AO}\)
\(\Rightarrow M\) là trung điểm OA
Ta có
\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{2MC}=\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{MI}+\overrightarrow{IB}+\)\(2\left(\overrightarrow{MI}+\overrightarrow{IC}\right)\)
\(=4\overrightarrow{MI}+\left(\overrightarrow{IA}+\overrightarrow{IB}+2\overrightarrow{IC}\right)\).
Theo tính chất trung điểm ta có:
\(\overrightarrow{IA}+\overrightarrow{IB}=2\overrightarrow{IJ}=-2\overrightarrow{IC}\).
Vì vậy \(\overrightarrow{IA}+\overrightarrow{IB}+2\overrightarrow{IC}=2\overrightarrow{IJ}+2\overrightarrow{IC}=2\left(-\overrightarrow{IC}+\overrightarrow{IC}\right)=\overrightarrow{0}\).
Suy ra \(\overrightarrow{MA}+\overrightarrow{MB}+2\overrightarrow{MC}=4\overrightarrow{MI}\).
Do đó: \(\overrightarrow{MN}=4\overrightarrow{MI}\) hay 3 điểm M, N, I thẳng hàng.