Bài 1: Giả sử x + y + z = 2017 và \(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}=\dfrac{1}{672}\)
Tính tổng C = \(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài ta có:
\(\left(x+y+z\right)\cdot\left(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\right)=2017\cdot\dfrac{1}{672}\)
\(\Rightarrow\dfrac{x+y+z}{x+y}+\dfrac{x+y+z}{y+z}+\dfrac{x+y+z}{z+x}=\dfrac{2017}{672}\)
\(\Rightarrow1+\dfrac{z}{x+y}+1+\dfrac{x}{y+z}+1+\dfrac{y}{z+x}=\dfrac{2017}{672}\)
\(\Rightarrow C=\dfrac{2017}{672}-3=\dfrac{1}{672}\)
Lời giải:
\(A=\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\)
\(A+3=\left(\frac{x}{y+z}+1\right)+\left(\frac{y}{z+x}+1\right)+\left(\frac{z}{x+y}+1\right)\)
\(A+3=\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}+\frac{x+y+z}{x+y}\)
\(A+3=2017\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)
\(A+3=2017.\frac{1}{672}=\frac{2017}{672}\)
\(\Rightarrow A=\frac{2017}{672}-3=\frac{1}{672}\)
Chào bạn
bạn nhân chéo lên rồi tách ra thì bạn sẽ có
1/x+1/y+1/z=1/x+y+z tương đương với (x+y)(y+z)(x+z)=0
Đến đây thì dễ rồi
Lời giải:
Nếu $x+y+z=0$ thì:
$\frac{x+y-z}{z}=\frac{-z-z}{z}=-2$
$\frac{y+z-x}{x}=\frac{-x-x}{x}=-2$
$\frac{z+x-y}{y}=\frac{-y-y}{y}=-2$
(thỏa mãn đkđb)
Khi đó:
$P=(1+\frac{x}{y})(1+\frac{y}{z})(1+\frac{z}{x})=\frac{(x+y)(y+z)(z+x)}{xyz}$
$=\frac{(-z)(-x)(-y)}{xyz}=\frac{-xyz}{xyz}=-1$
Nếu $x+y+z\neq 0$
Áp dụng TCDTSBN:
$\frac{x+y-z}{z}=\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z+y+z-x+z+x-y}{z+x+y}=\frac{x+y+z}{x+y+z}=1$
$\Rightarrow x+y=2z; y+z=2x, z+x=2y$. Khi đó:
$P=\frac{(x+y)(y+z)(z+x)}{xyz}=\frac{2z.2x.2y}{xyz}=8$