Cho hình chữ nhật ABCD, 2 đường chéo AC và BD cắt nhau tại O. Lấy E là điểm bất kì thuộc OA. BE cắt AD tại M, Qua P kẻ đường thẳng song song với BM cắt BC tại N và cắt AC tại F.
a) Chứng minh: BMDN là hình bình hành b) Chứng minh: O là trung điểm EF c) Qua E kẻ đường thẳng song song với BD cắt AD tại H, cắt CD tại I. Gọi O' là trung điểm IH. Chứng minh OO' song song DN d) Gọi K là điểm đối xứng với D qua O'. Chứng minh: K, M, B thẳng hàng