Cho pt ax^2 + bcx + b^3 + c^3 - 4abc = 0 (1) với a khác 0: vô nghiệm
Chứng minh rằng trong hai pt sau: ax^2 + bx + c = 0 (2) và ax^2 + cx + b = 0 (3), có một pt vô nghiệm và một pt có nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các giải của các bài toán này là sử dụng tổng các delta em nhé
\(\left\{{}\begin{matrix}ax^2+by+c=0\\cx^2+by+a=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}ax^2+by=-c\\cx^2+by=-a\end{matrix}\right.\)
vì pt có 1 nghiệm duy nhất
nên\(\dfrac{a}{c}\ne\dfrac{b}{b}\)⇔\(\dfrac{a}{c}\ne1\)⇔\(a\ne c\)
Akai Haruma