1) CMR: A= 999...9800...0 1 là số chính phương
n chữ số 9 n c/số 0
2) Tìm n thuộc N để n^2+5 là số chính phương
3) Tìm n thuộc N* để n^2-2n+8 là số chính phương
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
VV
7 tháng 10 2017
a, Vì n \(\in\)N => n2 là số chính phương
mà 9 = 32 là số chính phương
=> n2 + 9 là số chính phương.
Vậy A = n2 + 9 là số chính phương.
CHÚC BẠN HỌC TỐT!!!!
26 tháng 8 2021
A = 99...9800...01 ( n thuộc N sao )
= 99...9 . \(10^{n+2}\)+ 8.\(10^{n+1}\)+1
= (\(10^{n-1}\) - 1).\(10^{n+2}\)+ 8.\(10^{n+1}\) + 1
= \(10^{2n+2}\)+ - 10.\(10^{n+1}\)+ 8.\(10^{n+1}\)+ 1
= \(10^{2n+2}\) - 2.\(10^{n+1}\)+ 1
= (\(10^{n+1}\) - 1)²
Hok tốt~
Ta có:
A=9999.....98000..001
=10.....0-199..9(n chữ số 9,2n+1 chữ số 0)
= (10..0)^2-(10..0-9...9)(10..0+9..9)
(n chữ số 0,n-1 chữ số 9)
= (10..0)^2-[(10..0)^2-(9..9)^2]
=(9..9)^2(đpcm)
Vậy A LÀ MỘT SỐ CHÍNH PHƯƠNG
Đặt a^2=n^2+5 ta có:(a\(\in\)N)
<=> a^2-n^2=5
<=> (a-n)(a+n)=5
=>5\(⋮\)a-n ; 5\(⋮\)a+n
Mà n,a\(\in\)N =>a-n\(\in\)Ư(5);a+n\(\in\)Ư(5)
Mặt khác a+n\(\ge\)0,a+n\(\ge\)a-n(vì n,a\(\in\)N )
Ư(5)={1;-1;5;-5} nên ta xét TH sau:
TH:\(\left\{{}\begin{matrix}a-n=1\\a+n=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+n+a-n=5+1\\a+n=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2a=6\\a+n=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\n=2\end{matrix}\right.\)(thỏa mãn)
Vậy n=2