Các bạn giúp mình các bài sau nhé :
1.Cho a,b,c > 0 ; \(a^2+b^2+c^2=3\).Chứng minh: \(\dfrac{a}{\sqrt{b}}+\dfrac{a}{\sqrt{b}}+\dfrac{c}{\sqrt{a}}\)≥a+b+c
2.Cho a,b,c >0. Chứng minh : ∑\(\dfrac{a}{\sqrt{ab+b^2}}\ge\dfrac{3\sqrt{2}}{2}\)
3.Cho a,b,c >0; \(\sqrt{a}+\sqrt{b}+\sqrt{c=1}\).Chứng minh: ∑\(\dfrac{a^2+bc}{a\sqrt{b+c}}\ge\sqrt{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hiệu:
\(\frac{a}{b}-\frac{a+2007}{b+2007}=\frac{a.\left(b+2007\right)-b.\left(a+2007\right)}{b.\left(b+2007\right)}=\frac{ab+2007a-ab+2007b}{b.\left(b+2007\right)}=\frac{2007.\left(a-b\right)}{b.\left(b+2007\right)}\)
Xét 3 trường hợp:
TH1: a=b\(\Rightarrow\)a-b=0\(\Rightarrow\)\(\frac{2007.\left(a-b\right)}{b.\left(b+2007\right)}=\frac{2007.0}{b.\left(b+2007\right)}=0\)\(\Rightarrow\frac{a}{b}=\frac{a+2007}{b+2007}\)
TH2: a<b\(\Rightarrow\)a-b<0\(\Rightarrow\)\(2007.\left(a-b\right)< 0\Rightarrow\frac{2007.\left(a-b\right)}{b.\left(b+2007\right)}< 0\)\(\Rightarrow\frac{a}{b}< \frac{a+2007}{b+2007}\)
TH3: a>b\(\Rightarrow\)a-b>0\(\Rightarrow\)\(2007.\left(a-b\right)>0\Rightarrow\frac{2007.\left(a-b\right)}{b.\left(b+2007\right)}>0\)\(\Rightarrow\frac{a}{b}>\frac{a+2007}{b+2007}\)
Vậy với a=b thì \(\frac{a}{b}=\frac{a+2007}{b+2007}\)
a<b thì \(\frac{a}{b}< \frac{a+2007}{b+2007}\)
a>b thì \(\frac{a}{b}>\frac{a+2007}{b+2007}\)
em ko biết trình bày vì mình mới lớp 5 nên hãy dùng máy tính bỏ túi và em ra X bằng 7 ! Sai thi đừng bảo em nhé!
Xin lỗi em, chị k thể được vì muốn thì em phải làm được hết các thao tác như bên trên chị nói
a) 1012 - 1 = 1000...0 - 1 = 999...9
(12 c/s 0) (12 c/s 9)
Tổng các chữ số của 1012 - 1 là: 9 x 12 chia hết cho 9
Mà 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9
=> 1012 - 1 chia hết cho 9
Lại có: 9 chia hết cho 3
=> 1012 - 1 chia hết cho 3 và 9
b) 1010 + 2 = 1000...0 + 2 = 1000...02
(10 c/s 0) (9 c/s 0)
Tổng các chữ số của 1010 + 2 là: 1 + 0 + 0 + 0 + ... + 0 + 2 = 3 chia hết cho 3 nhưng không chia hết cho 9
(9 số 0)
Mà 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3 và 9
=> 1010 + 2 chia hết cho 3 nhưng không chia hết cho 9
Với a,b >0.Ta có: \(\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{4}{a+b}\left(đpcm\right)\)
Dấu = xảy ra khi và chỉ khi a=b
a) \(\left(x+1\right)\left(x-2\right)< 0\Rightarrow\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}}\Rightarrow x=\left\{1;0\right\}\)
b) Xét 2 trường hợp
+ TH1: \(\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 2\\x< -\frac{2}{3}\end{cases}}}\)=> \(x< -\frac{2}{3}\)thỏa mãn đề bài
+ TH2: \(\hept{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}\Rightarrow\hept{\begin{cases}x>2\\x>-\frac{2}{3}\end{cases}}}\)=> x > 2 thỏa mãn đề bài
Vậy \(\orbr{\begin{cases}x< -\frac{2}{3}\\x>2\end{cases}}\)thỏa mãn đề bài
Xét hiệu:
a3+b3+c3-3abc=a3+3a2b+3ab2+b3+c3-3a2b-3ab2-3abc
=(a+b)3+c3-3ab.(a+b+c)
=(a+b+c)[(a+b)2-(a+b).c+c2]-3ab.(a+b+c)
=(a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab.(a+b+c)
=(a+b+c)(a2+2ab+b2-ac-bc+c2-3ab)
=(a+b+c)(a2-ab+b2-ac-bc+c2)
ta lại có:
2.(a2-ab+b2-ac-bc+c2)
=2a2-2ab+2b2-2ac-2bc+2c2
=a2-2ab+b2+b2-2bc+c2+a2-2ac+c2
=(a-b)2+(b-c)2+(a-c)2\(\ge\)0 với mọi a,b,c
=>2.(a2-ab+b2-ac-bc+c2)\(\ge\)0
<=>a2-ab+b2-ac-bc+c2\(\ge\)0
ta có thêm a,b,c\(\ge\)0
=>(a+b+c)(a2-ab+b2-ac-bc+c2)\(\ge\)0 với mọi a,b,c
=>a3+b3+c3-3abc\(\ge\)0
<=>a3+b3+c3\(\ge\)3abc
Lắm bạn hỏi câu này quá mình giải 1 câu sau các bạn vào câu hỏi tương tự nha
Xét Hiệu : a^3 + b^3 + c^3 - 3abc
= ( a + b )^3 - 3ab(a+b) - 3abc + c^3
= ( a + b + c )^3 - 3 ( a+ b ).c ( a + b + c ) - 3ab ( a + b+ c )
= ( a + b + c )^3 - 3(a+b+c)( ac+ bc + ab )
= ( a+ b+ c )[ ( a + b + c )^2 - 3ab - 3ac - 3bc )
= ( a+ b + c )( a^2 + b^2 + c^2 + 2ab + 2bc + 2ca - 3ac - 3bc - 3ab )
=(a+ b+ c )( a^2 + b^2 + c^2 - ab - bc - ac )
= 2 ( a + b +c )(2a^2 + 2b^2 + 2c^2 - 2ab- 2bc- 2ac )
= 2 (a+b+c) [ a^2 - 2ab + b^2 + c^2 - 2bc + b^2 + a^2 - 2ac + c^2 )]
= 2 ( a+ b + c )[ ( a - b)^2 + ( c- b)^2 + ( c -a )^2 ] >=0 vì :
a ; b; c >0 => a+ b+ c >= 0
( a- b)^2 >=0
( b- c )^2 >=0
( c-a )^2 >=0
=> ( a -b )^2 + ( b- c)^2 + ( c- a)^2 >=0
=> a^3 +b^3 + c^3 - 3abc >=0
=> a^3 + b^3 + c^3 >= 3abc => ĐPCM