K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 11 2017

Lời giải:

Áp dụng BĐT Cauchy_ Schwarz ta có:

\(\text{VT}=\frac{a^6}{a^3+a^2b+ab^2}+\frac{b^6}{b^3+b^2c+bc^2}+\frac{c^6}{c^3+c^2a+ca^2}\)

\(\geq \frac{(a^3+b^3+c^3)^2}{a^3+a^2b+ab^2+b^3+b^2c+bc^2+c^3+c^2a+ca^2}\)

\(\Leftrightarrow \text{VT}\geq \frac{(a^3+b^3+c^3)^2}{a^3+b^3+c^3+ab(a+b)+bc(b+c)+ac(a+c)}\) (I)

Áp dụng BĐT Am-Gm ta có:

\(\left\{\begin{matrix} a^3+a^3+b^3\geq 3a^2b\\ b^3+b^3+c^3\geq 3b^2c\\ c^3+c^3+a^3\geq 3c^2a\end{matrix}\right.\Rightarrow 3(a^3+b^3+c^3)\geq 3(a^2b+b^2c+c^2a)\)

\(\Leftrightarrow a^3+b^3+c^3\geq a^2b+b^2c+c^2a\) (1)

Tương tự:

\(\left\{\begin{matrix} a^3+b^3+b^3\geq 3ab^2\\ b^3+c^3+c^3\geq 3bc^2\\ c^3+a^3+a^3\geq 3ca^2\end{matrix}\right.\Rightarrow 3(a^3+b^3+c^3)\geq 3(ab^2+bc^2+ca^2)\)

\(\Leftrightarrow a^3+b^3+c^3\geq ab^2+bc^2+ca^2(2)\)

Từ \((1);(2)\Rightarrow 2(a^3+b^3+c^3)\geq ab(a+b)+bc(b+c)+ac(c+a)\)

\(\Rightarrow a^3+b^3+c^3+ab(a+b)+bc(b+c)+ac(c+a)\leq 3(a^3+b^3+c^3)\) (II)

Từ \((I);(II)\Rightarrow \text{VT}\geq \frac{(a^3+b^3+c^3)^2}{a^3+b^3+c^3+ab(a+b)+bc(b+c)+ac(a+c)}\geq \frac{(a^3+b^3+c^3)^2}{3(a^3+b^3+c^3)}\)

\(\Leftrightarrow \text{VT}\geq \frac{a^3+b^3+c^3}{3}\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c\)

NV
2 tháng 3 2022

Đặt vế trái của BĐT cần chứng minh là P

Ta có: 

\(\dfrac{a^2}{a^2+b^2+c^2-bc}=\dfrac{2a^2}{2a^2+b^2+c^2+\left(b-c\right)^2}\le\dfrac{2a^2}{2a^2+b^2+c^2}=\dfrac{2a^2}{a^2+b^2+a^2+c^2}\)

\(\le\dfrac{1}{2}\left(\dfrac{a^2}{a^2+b^2}+\dfrac{a^2}{a^2+c^2}\right)\)

Tương tự:

\(\dfrac{b^2}{a^2+b^2+c^2-ac}\le\dfrac{1}{2}\left(\dfrac{b^2}{a^2+b^2}+\dfrac{b^2}{b^2+c^2}\right)\)

\(\dfrac{c^2}{a^2+b^2+c^2-ab}\le\dfrac{1}{2}\left(\dfrac{c^2}{a^2+c^2}+\dfrac{c^2}{b^2+c^2}\right)\)

Cộng vế với vế:

\(P\le\dfrac{1}{2}\left(\dfrac{a^2+b^2}{a^2+b^2}+\dfrac{b^2+c^2}{b^2+c^2}+\dfrac{c^2+a^2}{a^2+c^2}\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c\)

16 tháng 12 2017

Lời giải ở đây: https://hoc24.vn/hoi-dap/question/486195.html

16 tháng 10 2017

Từ \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Rightarrow a+b+c\ge\dfrac{3\left(ab+bc+ca\right)}{a+b+c}\). Tức cần chứng minh

\(\dfrac{a^3}{b^2-bc+c^2}+\dfrac{b^3}{c^2-ac+a^2}+\dfrac{c^3}{a^2-ab+b^2}\ge a+b+c\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT=\dfrac{a^4}{ab^2-abc+ac^2}+\dfrac{b^4}{bc^2-abc+a^2b}+\dfrac{c^4}{a^2c-abc+b^2c}\)

\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a^2b+a^2b+b^2c+bc^2+c^2a+ca^2-3abc}\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2\ge\left(a+b+c\right)\left(a^2b+a^2b+b^2c+bc^2+c^2a+ca^2-3abc\right)\)

\(\Leftrightarrow a^4+b^4+c^4+abc\left(a+b+c\right)\ge ab\left(a^2+b^2\right)+bc\left(b^2+c^2\right)+ca\left(c^2+a^2\right)\)

Đúng theo Schur bậc 4

17 tháng 10 2017

Kết quả hình ảnh cho bất ngờ troll face

Schur bậc 3 ---> not okay

Schur bậc 4 ---> Okay

Kết quả hình ảnh cho troll face full

NV
18 tháng 9 2021

\(\dfrac{2}{a+2}+\dfrac{2}{b+2}+\dfrac{2}{c+2}\ge2\)

\(\Leftrightarrow\dfrac{2}{a+2}-1+\dfrac{2}{b+2}-1+\dfrac{2}{c+2}-1\ge2-3\)

\(\Rightarrow1\ge\dfrac{a}{a+2}+\dfrac{b}{b+2}+\dfrac{c}{c+2}=\dfrac{a^2}{a^2+2a}+\dfrac{b^2}{b^2+2b}+\dfrac{c^2}{c^2+2c}\)

\(\Rightarrow1\ge\dfrac{\left(a+b+c\right)^2}{a^2+2a+b^2+2b+c^2+2c}\)

\(\Rightarrow a^2+b^2+c^2+2\left(a+b+c\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Rightarrow\) đpcm

18 tháng 9 2021

Phía trên thoả mãn \(\ge1\) chứ không phải 3/2 đâu ạ 

23 tháng 9 2021

Áp dụng BĐT Cosi:

\(\dfrac{a}{\sqrt{b^2+ab}}=\dfrac{a\sqrt{2}}{\sqrt{2\left(b^2+ab\right)}}=\dfrac{a\sqrt{2}}{\sqrt{2b\left(a+b\right)}}\ge\dfrac{a\sqrt{2}}{\dfrac{2b+a+b}{2}}=\dfrac{2\sqrt{2}a}{a+3b}\)

Cmtt: \(\dfrac{b}{\sqrt{c^2+bc}}\ge\dfrac{2\sqrt{2}b}{b+3c};\dfrac{c}{\sqrt{a^2+ca}}\ge\dfrac{2\sqrt{2}c}{c+3a}\)

\(\Leftrightarrow P\ge2\sqrt{2}\left(\dfrac{a}{a+3b}+\dfrac{b}{b+3c}+\dfrac{c}{c+3a}\right)\\ \Leftrightarrow\dfrac{P}{\sqrt{2}}\ge2\left(\dfrac{a}{a+3b}+\dfrac{b}{b+3c}+\dfrac{c}{c+3a}\right)\\ \Leftrightarrow\dfrac{P}{\sqrt{2}}\ge\dfrac{2\left(a+b+c\right)^2}{a^2+b^2+c^2+3\left(ab+bc+ca\right)}\ge\dfrac{2\left(a+b+c\right)^2}{\left(a+b+c\right)^2+\dfrac{1}{3}\left(a+b+c\right)^2}\\ \Leftrightarrow\dfrac{P}{\sqrt{2}}\ge\dfrac{2}{\dfrac{4}{3}}=\dfrac{3}{2}\\ \Leftrightarrow P\ge\dfrac{3\sqrt{2}}{2}\)

Dấu \("="\Leftrightarrow a=b=c\)

23 tháng 9 2021

từ dòng thứ 4 lm sao suy ra dòng thứ 5 thế ạ

25 tháng 6 2023

Áp dụng bất đẳng thức Cô si cho hai số dương ta có:

(a2 + b2) + (b2 + c2) + (c2 + a2) ≥ 2ab + 2bc + 2ca

=> 2(a2 + b2 + c2 ) ≥ 2 (ab + bc + ca) (1) (a2 + 1) + (b2 + c2) + (c2 + a2) ≥ 2a + 2b + 2c

=> a2 + b2 + c2 + 3 ≥ 2(a + b + c) (2)

Cộng các vế của (1) và (2) ta có:

3 ( a2 + b2 + c2 ) + 3 ≥ 2 (ab + bc + ca + a + b + c)

=> 3( a2 + b2 + c2 ) + 3 ≥ 12 => a2 + b2 + c2 ≥ 3.

Ta có: (a^3/b + ab ) + ( b^3/c + bc ) + ( c^3/a + ca)≥ 2(a2 + b2 + c2) (CÔ SI) 

<=>a^3/b + b^3/c + c^3/a +ab + bc + ac  ≥ 2(a2 + b2 + c2)

Vì a2 + b2 + c2 ≥ ab + bc + ca => a^3 + b^3 + c^3 ≥ a2 + b2 + c2 ≥ 3 (đpcm).

25 tháng 6 2023

Áp dụng bất đẳng thức cô-si cho hai số dương ta có:

\(\left(a^2+b^2\right)+\left(b^2+c^2\right)+\left(c^2+a^2\right)\ge2ab+2bc+2ca\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\) (1)

\(\left(a^2+b^2\right)+\left(b^2+c^2\right)+\left(c^2+a^2\right)\ge2a+2b+2c\)

\(\Rightarrow a^2+b^2+c^2+3\ge2\left(a+b+c\right)\) (2)

Cộng (1) với (2)

\(3\left(a^2+b^2+c^2\right)+3\ge2\left(ab+bc+ca+a+b+c\right)\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)+3\ge12\)

\(\Rightarrow a^2+b^2+c^2\ge3\)

Ta có: \(\left(\dfrac{a^3}{b}+ab\right)+\left(\dfrac{b^3}{c}+bc\right)+\left(\dfrac{c^3}{a}+ca\right)\ge2\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}+ab+bc+ca\ge2\left(a^2+b^2+c^2\right)\)

Vì \(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge a^2+b^2+c^2\ge3\) (đpcm).

19 tháng 11 2018

1) Áp dụng bđt Cauchy:

\(\dfrac{1}{a^2}+\dfrac{1}{b^2}\ge2\sqrt{\dfrac{1}{a^2b^2}}=\dfrac{2}{ab}\)

Xong