Tính:
1) A=\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{2010\sqrt{2009}+2009\sqrt{2010}}\)
2) B=\(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{2006}+\sqrt{2007}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+........+\frac{1}{2010\sqrt{2009}+2009\sqrt{2010}}=\frac{1}{\sqrt{1}\sqrt{2}\left(\sqrt{1}+\sqrt{2}\right)}+\frac{1}{\sqrt{2}\sqrt{3}\left(\sqrt{2}+\sqrt{3}\right)}+........+\frac{1}{\sqrt{2009}\sqrt{2010}\left(\sqrt{2009}+\sqrt{2010}\right)}\)
\(=\frac{\left(\sqrt{2010}-\sqrt{2009}\right)\left(\sqrt{2010}+\sqrt{2009}\right)}{\sqrt{2009}\sqrt{2010}\left(\sqrt{2010}+\sqrt{2009}\right)}+.......+\frac{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}{\sqrt{2}\sqrt{1}\left(\sqrt{2}+\sqrt{1}\right)}=1-\frac{1}{\sqrt{2010}}=1-\frac{\sqrt{2010}}{2010}\)
b: Ta có: \(\dfrac{1}{2+\sqrt{3}}+\dfrac{\sqrt{2}}{\sqrt{6}}-\dfrac{2}{3+\sqrt{3}}\)
\(=2-\sqrt{3}+\dfrac{1}{3}\sqrt{3}-1+\dfrac{1}{3}\sqrt{3}\)
\(=\dfrac{3-\sqrt{3}}{3}\)
a) Ta có: \(A=\sqrt{20}-2\sqrt{45}+3\sqrt{18}+\sqrt{72}\)
\(=2\sqrt{5}-6\sqrt{5}+9\sqrt{2}+6\sqrt{2}\)
\(=-4\sqrt{5}+15\sqrt{2}\)
b) Ta có: \(B=4\sqrt{\left(\sqrt{3}-1\right)^2}+2\sqrt{12}+4\sqrt{\dfrac{1}{2}}\)
\(=4\left(\sqrt{3}-1\right)+2\cdot2\sqrt{3}+\dfrac{4}{\sqrt{2}}\)
\(=4\sqrt{3}-4+4\sqrt{3}+2\sqrt{2}\)
\(=8\sqrt{3}+2\sqrt{2}-4\)
c) Ta có: \(C=\left(3+\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\right)\left(3-\dfrac{3+\sqrt{3}}{1+\sqrt{3}}\right)\)
\(=\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)\)
=9-3
=6
d) Ta có: \(D=\dfrac{1}{2+\sqrt{3}}+\dfrac{1}{2-\sqrt{3}}\)
\(=2-\sqrt{3}+2+\sqrt{3}\)
=4
Bài 2:
a: \(=\sqrt{2}-\dfrac{2}{5}\sqrt{2}+2\sqrt{2}+2\sqrt{2}=\dfrac{23}{5}\sqrt{2}\)
\(\dfrac{1}{\sqrt{k}+\sqrt{k+1}}=\dfrac{\sqrt{k}-\sqrt{k+1}}{k-k-1}=\sqrt{k+1}-\sqrt{k}\\ \Leftrightarrow\text{Đặt}\text{ }A=\dfrac{1}{3\left(\sqrt{2}+\sqrt{1}\right)}+\dfrac{1}{5\left(\sqrt{3}+\sqrt{2}\right)}+...+\dfrac{1}{4021\left(\sqrt{2011}+\sqrt{2010}\right)}< \dfrac{1}{2\left(\sqrt{2}+\sqrt{1}\right)}+\dfrac{1}{2\left(\sqrt{3}+\sqrt{2}\right)}+...+\dfrac{1}{2\left(\sqrt{2011}+\sqrt{2010}\right)}\\ \Leftrightarrow A< \dfrac{1}{2}\left(\dfrac{1}{\sqrt{2}+\sqrt{1}}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+...+\dfrac{1}{\sqrt{2011}+\sqrt{2010}}\right)\)
\(\Leftrightarrow A< \dfrac{1}{2}\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2011}-\sqrt{2010}\right)\\ \Leftrightarrow A< \dfrac{1}{2}\left(\sqrt{2011}-1\right)< \dfrac{1}{2}\cdot\dfrac{\sqrt{2011}-1}{\sqrt{2011}}=\dfrac{1}{2}\left(1-\dfrac{1}{\sqrt{2011}}\right)\)
\(\dfrac{\sqrt{x-2009}-1}{x-2009}+\dfrac{\sqrt{y-2010}-1}{y-2010}+\dfrac{\sqrt{z-2011}-1}{z-2011}=\dfrac{3}{4}\)\(\left(\left\{{}\begin{matrix}x>2009\\y>2010\\z>2011\end{matrix}\right.\right)\)
\(\Leftrightarrow\dfrac{1}{4}-\dfrac{\sqrt{x-2009}-1}{x-2009}+\dfrac{1}{4}-\dfrac{\sqrt{y-2010}-1}{y-2010}+\dfrac{1}{4}-\dfrac{\sqrt{z-2011}-1}{z-2011}=0\)
\(\Leftrightarrow\dfrac{x-2009-4\sqrt{x-2009}+4}{x-2009}+\dfrac{y-2010-4\sqrt{y-2010}+4}{y-2010}+\dfrac{z-2011-4\sqrt{z-2011}+4}{z-2011}=0\)
Nhận xét: \(\left\{{}\begin{matrix}\dfrac{\left(\sqrt{x-2009}-2\right)^2}{x-2009}\ge0\\\dfrac{\left(\sqrt{y-2010}-2\right)^2}{y-2010}\ge0\\\dfrac{\left(\sqrt{z-2011}-2\right)^2}{z-2011}\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x-2009}-2=0\\\sqrt{y-2010}-2=0\\\sqrt{z-2011}-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2013\\y=2014\\z=2015\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(2013;2014;2015\right)\)
Mình chỉ viết CT tổng quát thôi nha rồi bạn tự thay vào
a, \(\frac{1}{\sqrt{n}(n+1)+n\sqrt{n+1} }=\frac{1}{\sqrt{n(n+1)( }\sqrt{n}+\sqrt{n+1}} =\frac{\sqrt{n+1}-\sqrt{n} }{\sqrt{n}\sqrt{n+1} } =\frac{1}{\sqrt{n} } -\frac{1}{\sqrt{n+1} } \)
b,\(\frac{1}{\sqrt{n}+\sqrt{n+1} }=\frac{\sqrt{n+1}-\sqrt{n} }{1}= \sqrt{n+1}-\sqrt{n} \)
Cảm ơn bạn !!