Cho tam giác ABC có 3 đường cao AN, BF, CE cắt nhau tại H. Tìm và chứng minh các tứ giác nội tiếp đường tròn.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc HMC+góc HNC=180 độ
=>HMCN nội tiếp
b: góc CED=góc CAD
góc CDE=góc CAE
mà góc CAD=góc CAE(=góc CBD)
nên góc CED=góc CDE
=>CD=CE
tứ giác AECF có góc AEC=AFC là 2 góc kề nhìn cạnh AC nên nt đg tròn
b) ta có : góc ABK =0,5 sđ cung AK=90 độ
xet tam giac ABK và AFC có
góc ABK=góc AFC=90 độ
goc AKB =góc ACF (GÓC NT CHAN CUNG AB)
=>Tam giác ABK đồng dạng vs tam giác AFC(G.G)
Tứ giác AECF có góp AEC=ACF laf2 góc kề nhìn cạnh AC nên nối tiếp đường tròn
B)Ta có:Góc ABK=0,5 sđ cùng AK=90 độ
Xét tam giác ABK
a: Xét tứ giác ADHE có
\(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\)
=>ADHE là tứ giác nội tiếp
b: Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}=90^0\)
nên BEDC là tứ giác nội tiếp
c: Xét ΔABC có
BD,CE là các đường cao
BD cắt CE tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC
a: góc ADH+góc AEH=180 độ
=>ADHE nội tiếp
b; góc xAC=góc ABC
=>góc xAC=góc ADE
=>xy//DE
a) đề khúc sau là \(MK.MF=MB.MC\)
Ta có: \(\angle BKC=\angle BFC=90\Rightarrow BKFC\) nội tiếp
\(\Rightarrow\angle MKB=\angle MCF\)
Xét \(\Delta MKB\) và \(\Delta MCF:\) Ta có: \(\left\{{}\begin{matrix}\angle MKB=\angle MCF\\\angle CMFchung\end{matrix}\right.\)
\(\Rightarrow\Delta MKB\sim\Delta MCF\left(g-g\right)\Rightarrow\dfrac{MK}{MC}=\dfrac{MB}{MF}\Rightarrow MK.MF=MB.MC\)
b) Xét \(\Delta MNB\) và \(\Delta MCA:\) Ta có: \(\left\{{}\begin{matrix}\angle MNB=\angle MCA\left(ANBCnt\right)\\\angle CMAchung\end{matrix}\right.\)
\(\Rightarrow\Delta MNB\sim\Delta MCA\left(g-g\right)\Rightarrow\dfrac{MN}{MC}=\dfrac{MB}{MA}\Rightarrow MN.MA=MB.MC\)
mà \(MK.MF=MB.MC\Rightarrow MK.MF=MA.MN\Rightarrow\dfrac{MK}{MA}=\dfrac{MN}{MF}\)
Xét \(\Delta MKN\) và \(\Delta MAF:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{MK}{MA}=\dfrac{MN}{MF}\\\angle AMFchung\end{matrix}\right.\)
\(\Rightarrow\Delta MKN\sim\Delta MAF\left(c-g-c\right)\Rightarrow\angle MNK=\angle MFA\)
\(\Rightarrow ANKF\) nội tiếp \(\Rightarrow\angle AKN=\angle AFN\)
3:
Xét ΔGMB và ΔGCA có
góc GMB=góc GCA
góc G chung
=>ΔGMB đồng dạng với ΔGCA
=>GM/GC=GB/GA
=>GM*GA=GB*GC
Xét ΔGEB và ΔGCD có
góc GEB=góc GCD
góc EGB chung
=>ΔGEB đồng dạng với ΔGCD
=>GE/GC=GB/GD
=>GE*GD=GB*GC=GM*GA
=>GE/GA=GM/GD
=>ΔGEM đồng dạng với ΔGAD
=>góc GEM=góc GAD
=>góc DEM+góc DAM=180 độ
=>ADEM nội tiếp
=>góc MDE=góc MAE