tìm a để đa thức x3+x2-x+a chia hết cho x+2
giải nhanh hộ mik nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: A=x3+x2-x+a=(x2-x)(x+2)+(x+a)
Để A chia hết cho x+2<=>(x+a)chia hết cho x+2<=>a=2
Vậy a=2
\(x^4-x^3+6x^2-x+a=x^2\left(x^2-x+5\right)+x^2-x+a\)
Do \(x^2\left(x^2-x+5\right)\) chia hết \(x^2-x+5\)
\(\Rightarrow x^2-x+a\) chia hết \(x^2-x+5\)
\(\Rightarrow a=5\)
b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)
a: \(\Leftrightarrow2x^4-2x^3+2x^2+3x^3-3x^2+3x-2x^2+2x+2+a-2⋮x^2-x+1\)
=>a=2
Bài 1:
Ta có: \(5x^3-3x^2+2x+a⋮x+1\)
\(\Leftrightarrow5x^3+5x^2-8x^2-8x+10x+10+a-10⋮x+1\)
\(\Leftrightarrow a-10=0\)
hay a=10
C1
a) -7x(3x-2)=-21x^2+14x
b) 87^2+26.87+13^2=87^2+2.13.87+13^2=(87+13)^2=100^2
C2
a) (x-5)(x+5)
b)3x(x+5)-2(x+5)=(3x-2)(x+5)=0
\(\Rightarrow\left[\begin{array}{nghiempt}3x-2=0\\x+5=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{2}{3}\\x=-5\end{array}\right.\)
Vậy S={-5;2/3}
C3:
a)3x^3-2x^2+2=(x+1)(3x^2-5x-5)-3
b) Để A chia hết cho B=> x+1\(\inƯ\left(-3\right)\)
\(\Rightarrow\begin{cases}x+1=3\\x+1=-3\\x+1=1\\x+1=-1\end{cases}\)\(\Rightarrow\begin{cases}x=2\\x=-4\\x=0\\x=-2\end{cases}\)
\(\left(x^3+x^2-x+a\right):\left(x+2\right)\)
Để \(\left(x^3+x^2-x+a\right)⋮\left(x+2\right)\)
\(\Leftrightarrow a-2=0\)
\(\Leftrightarrow a=2\)
Vậy \(a=2\) thì \(\left(x^3+x^2-x+a\right)\) chia hết cho \(\left(x+2\right)\)
Ta làm tính chia:
x+x-x+a 3 2 x+2 x-x+1 2 x+2x 3 2 -x-x+a 2 -x-2x 2 x+a x +2 a-2
\(\Rightarrow\) Để \(x^3+x^2-x+a⋮x+2\)
\(thì\Rightarrow a-2=0\\ \Leftrightarrow a=2\)
Vậy Để \(x^3+x^2-x+a⋮x+2\)
thì \(a=2\)