K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2021

bạn viết lại đề đi

22 tháng 8 2021

\(\sqrt{x+2-4\sqrt{x-2}}+\sqrt{x+7-6\sqrt{x-2}}=5\)

dạ đây ạ

20 tháng 3 2022

a, 25/12

b,  25/72

20 tháng 3 2022

a) = 3/4 + 4/3 = 25/12

b) = 3/8 - 16/9 = -101/72 * hình như hơi sai sai:"> *

26 tháng 4 2021

Câu 1: 

\(\Rightarrow \left[\begin{array}{} x+\frac{1}{2}=0\\ \frac{2}{3}-2x=0 \end{array} \right.\)

\(\Leftrightarrow \left[\begin{array}{} x=\frac{-1}{2}\\ x=\frac{1}{3} \end{array} \right.\)

Vậy phương trình có tập nghiệm S={\(\frac{-1}{2};\frac{1}{3}\)}

Câu 2: 

\(\Rightarrow \left[\begin{array}{} 3x-10=0\\ 5-\frac{1}{2}x=0 \end{array} \right.\)

\(\Leftrightarrow \left[\begin{array}{} x-=\frac{10}{3}\\ x=10 \end{array} \right.\)

Vậy phương trình có tập nghiệm S={\(10;\frac{10}{3}\)}

Câu 3: 

\(\Leftrightarrow \frac{1}{3}x=\frac{65}{4}-\frac{53}{4}\)

\( \Leftrightarrow \frac{1}{3}x=\frac{12}{4}\)

\(\Leftrightarrow x=9\)

Vậy phương trình có tập nghiệm S={9}

Câu 4: 

\(\Leftrightarrow \frac{2}{3}x=\frac{2}{3}\)

\(\Leftrightarrow x=1\)

Vậy phương trình có tập nghiệm S={1}

Câu 5: 

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x(x+1)}=\frac{2010}{2011}\)

\(\Leftrightarrow 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2010}{2011}\)

\(\Leftrightarrow 1-\frac{1}{x+1}=\frac{2010}{2011}\)

\(\Leftrightarrow \frac{x}{x+1}=\frac{2010}{2011}\)

\(\Rightarrow 2010x+2010=2011x\)

\(\Leftrightarrow x=2010\)

Vậy phương trình có tập nghiệm S={2010}

 

 

 

26 tháng 4 2021

cảm ơn bạn Hoàng Bình Bảo nha nhưng mà đây là toán lớp 6 mà bạn 

16 tháng 4 2020

Câu 1:

a) 2(x-3)-3(x-5)=4(3-x)-18

<=> 3x-6-3x+15-12+4x+18=0

<=> 4x+15=0

<=> 4x=-15

<=> x=-15/4

b) -2(2x-8)+3(4-2x)=-57-5(3x-7)

<=> -4x+16+12-6x+57+15x-35=0

<=> -5x+50=0

<=> -5x=-50

<=> x=10

c) 3|2x2-7|=33

<=> |2x2-7|=11

<=> \(\orbr{\begin{cases}2x^2-7=11\\2x^2-7=-11\end{cases}\Leftrightarrow\orbr{\begin{cases}2x^2=18\\2x^2=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x^2=9\\x^2=-2\end{cases}\Leftrightarrow}x=\pm3}\)

d) có 9x+17=3(3x+2)+11

=> 11 chia hết cho 3x+2

=> 3x+2 thuộc Ư (11)={-11;-1;1;11}

ta có bảng

3x+2-11-1111
x-13/3-1-1/33
16 tháng 4 2020

Câu 2:

xy-5x+y=17

<=> x(y-5)+(y-5)=12

<=> (y-5)(x+5)=12

=> y-5; x+5 \(\inƯ\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)

lập bảng tương tự câu 1

27 tháng 1 2017

CÂU 3 : ĐỀ BÀI , SUY RA :

X-1 + X-2 =3 <=> 2X = 6 <=> X =3 

NV
19 tháng 3 2022

2.

Áp dụng định lý hàm cosin:

\(b=\sqrt{a^2+c^2-2ac.cosB}=\sqrt{8^2+3^2-2.8.3.cos60^0}=7\)

\(S_{ABC}=\dfrac{1}{2}ac.sinB=\dfrac{1}{2}.8.3.sin60^0=6\sqrt{3}\)

4.

\(\Delta=\left(m+2\right)^2-16>0\Leftrightarrow m^2+4m-12>0\Rightarrow\left[{}\begin{matrix}m>2\\m< -6\end{matrix}\right.\) (1)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-m-2\\x_1x_2=4\end{matrix}\right.\)

\(x_1+x_2+x_1x_2>1\)

\(\Leftrightarrow-m-2+4>1\)

\(\Rightarrow m< 1\) (2)

Kết hợp (1); (2) ta được \(m< -6\)

a: x/2=-5/y

=>xy=-10

=>\(\left(x,y\right)\in\left\{\left(1;-10\right);\left(-10;1\right);\left(-1;10\right);\left(10;-1\right);\left(2;-5\right);\left(-5;2\right);\left(-2;5\right);\left(5;-2\right)\right\}\)

b: =>xy=12

mà x>y>0

nên \(\left(x,y\right)\in\left\{\left(12;1\right);\left(6;2\right);\left(4;3\right)\right\}\)

c: =>(x-1)(y+1)=3

=>\(\left(x-1;y+1\right)\in\left\{\left(1;3\right);\left(3;1\right);\left(-1;-3\right);\left(-3;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(2;2\right);\left(4;0\right);\left(0;-4\right);\left(-2;-2\right)\right\}\)

d: =>y(x+2)=5

=>\(\left(x+2;y\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(-1;5\right);\left(3;1\right);\left(-3;-5\right);\left(-7;-1\right)\right\}\)