K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(2x^4-3x^3+4x+1⋮x^2-1\)

\(\Leftrightarrow2x^4-2x^2-3x^3+3x+2x^2-2+x+3⋮x^2-1\)

\(\Leftrightarrow x+3⋮x^2-1\)

\(\Leftrightarrow x^2-9⋮x^2-1\)

\(\Leftrightarrow x^2-1\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)

\(\Leftrightarrow x\in\left\{\sqrt{2};-\sqrt{2};0;\sqrt{3};-\sqrt{3};\sqrt{5};-\sqrt{5};3;-3\right\}\)

b: \(x^5+2x^4+3x^2+x-3⋮x^2+1\)

\(\Leftrightarrow x^5+x^3+2x^4+2x^2-x^3-x+x^2+1+2x-4⋮x^2+1\)

\(\Leftrightarrow2x-4⋮x^2+1\)

\(\Leftrightarrow4x^2-16⋮x^2+1\)

\(\Leftrightarrow4x^2+4-20⋮x^2+1\)

\(\Leftrightarrow x^2+1\in\left\{1;2;4;5;10;20\right\}\)

hay \(x\in\left\{0;1;-1;\sqrt{3};-\sqrt{3};2;-2;3;-3;\sqrt{19};-\sqrt{19}\right\}\)

a: \(\dfrac{2x^4-3x^3+4x^2+1}{x^2-1}=\dfrac{2x^4-2x^2-3x^3+3x+6x^2-6-3x+7}{x^2-1}\)

\(=2x^2-3x+6+\dfrac{-3x+7}{x^2-1}\)

Để dư bằng 0 thì -3x+7=0

=>x=7/3

b: \(\dfrac{x^5+2x^4+3x^2+x-3}{x^2+1}\)

\(=\dfrac{x^5+x^3+2x^4+2x^2-x^3-x+x^2+1+2x-4}{x^2+1}\)

\(=x^3+2x^2-x+1+\dfrac{2x-4}{x^2+1}\)

Để đư bằng 0 thì 2x-4=0

=>x=2

19 tháng 12 2021

Bài 1: 

a: \(=\dfrac{2x^4-8x^3+2x^2+2x^3-8x^2+2x+18x^2-72x+18+56x-15}{x^2-4x+1}\)

\(=2x^2+2x+18+\dfrac{56x-15}{x^2-4x+1}\)

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Yêu cầu đề bài là gì vậy bạn?

10 tháng 4 2020

dsssws

`@` `\text {Ans}`

`\downarrow`

Gửi c!

loading...

loading...

loading...

27 tháng 6 2023

Bài 1: 

a) \(3x^2\left(2x^3-x+5\right)-6x^5-3x^3+10x^2\)

\(=6x^5-3x^3+10x^2-6x^5-3x^3+10x^2\)

\(=10x^2+10x^2\)

\(=20x^2\)

b) \(-2x\left(x^3-3x^2-x+11\right)-2x^4+3x^3+2x^2-22x\)

\(=-2x^4+6x^3+2x^2-22x-2x^4+3x^3+2x^2-22x\)

\(=-4x^4+9x^3+4x^2-44x\)

15 tháng 2 2018

Ta có: f(x) + g(x) – h(x)

      = (x5 – 4x3 + x2 – 2x + 1) + (x5 – 2x4 + x2 – 5x + 3) – (x4 – 3x2 + 2x – 5)

      = x5 – 4x3 + x2 – 2x + 1 + x5 – 2x4 + x2 – 5x + 3 – x4 + 3x2 - 2x + 5

      = (x5 +x5) – (2x4 + x4) – 4x3 + (x2 + x2 + 3x2)- (2x + 5x + 2x) + (1 + 3 + 5)

      = (1 + 1)x5 – (2 + 1)x4 – 4x3 + (1 + 1 + 3)x2 - (2 + 5 + 2)x + (1 + 3 + 5)

      = 2x5 – 3x4 – 4x3 + 5x2 – 9x + 9

22 tháng 12 2021

b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)

\(=2x^2-3x+1\)

22 tháng 8 2021

a) \(\left(2x^4-3x^3-3x^2-2+6x\right):\left(x^2-2\right)=2\left(x^2-\dfrac{3}{2}x+\dfrac{1}{2}\right)\left(x^2-2\right):\left(x^2-2\right)=2x^2-3x+1\)

5 tháng 5 2023

Ta sử dụng phương pháp chia đa thức bằng phép chia đa thức tổng quát để giải bài toán này. Theo đó, ta có:
2x^4 + 4x³-3x² - 4x + 1: (x² - 1)
= 2x² + 4x + 1 - (x² + 4x + 1)/(x² - 1)
= 2x² + 4x + 1 - (x² - 1 + 4x+2)/(x² -
1)
= 2x² + 4x + 1 - (x² + 4x + 2)/(x² - 1) +
1/(x² - 1) = 2x² + 4x + 1 - (x² + 4x + 2)/(x² - 1) +
1/[(x+1)(x-1)]
Vậy kết quả là:
A(x) (x²-1)=2x² + 4x + 1 - (x² + 4x +
2)/(x² - 1) + 1/[(x+1)(x-1)]