K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2017

khai triển ra, ta dc:
25^n+5^n-18^n-12^n (1)
=(25^n-18^n)-(12^n-5^n)
=(25-18)K-(12-5)H = 7(K-H) chia hết cho 7
.giải thích: 25^n-18^n=(25-18)[25^(n-1)+ 25^(n-2).18^1 +.....+18^n]=7K vì đặt K là [25^(n-1)+ 25^(n-2).18^1 +.....+18^n, cái (12-5)H cx tương tự

Biểu thức đó đã chia hết cho 7 rồi, bây h cần chứng minh biểu thức đó chia hết cho 13 là xong
từ (1) nhóm ngược lại để chia hết cho 13. Cụ thể là (25^n-12^n)-(18^n-5^n) chia hết cho 13, cách chứng minh chia hết cho 13 này cx tương tự như cách c.minh chia hết cho 7

.1Mà biểu thức này vừa chia hết cho 7, vừa chia hết cho 13 nên chia hết cho (7.13)=91

Xong!!!

9 tháng 11 2017

hơi bị khó hiểu

AH
Akai Haruma
Giáo viên
30 tháng 1 2017

Đặt \(A=n(n+1)(2n+1)\)

Nếu $n$ chẵn thì $A$ chẵn \(\Rightarrow A\vdots 2\)

Nếu $n$ lẻ thì $n+1$ chẵn, do đó $A$ chẵn \(\Rightarrow A\vdots 2\)

Vậy $A$ luôn chia hết cho $2$ $(I)$

Nếu $n$ chia hết cho $3$ thì $A$ chia hết cho $3$

Nếu $n$ chia $3$ dư $1$ thì $2n+1$ chia hết cho $3$ nên $A$ chia hết cho $3$

Nếu $n$ chia $3$ dư $2$ thì $n+1$ chia hết cho $3$ nên $A$ chia hết cho $3$

Vậy $A$ luôn chia hết cho $3$ $(II)$

Từ $(I),(II)$ kết hợp với $(2,3)=1$ suy ra \(A\vdots (2.3=6)\) (đpcm)

30 tháng 1 2017

Nguyễn Huy TúAkai Haruma

24 tháng 6 2017

Đề sai rồi b

26 tháng 6 2017

Không sai đâu bạn

6 tháng 11 2023

Llklkksd

8 tháng 10 2019

a,(2n+4).2=4(n+2) chia hwtc ho 8

8 tháng 10 2019

a) \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)

\(=\left(2n+2\right)4\)

\(=2\left(n+1\right).4\)

\(=8\left(n+1\right)⋮8\) 

=> đpcm

Câu 1:

Ta có: \(55^{n+1}+55^n\)

\(=55^n\left(55+1\right)=55^n\cdot56⋮56\)(đpcm)

Câu 2:

Ta có: \(5^6-10^4=\left(5^3-10^2\right)\left(5^3+10^2\right)\)

\(=\left(5^2\cdot5-5^2\cdot2^2\right)\cdot\left(5^2\cdot5+5^2\cdot2^2\right)\)

\(=5^2\cdot\left(5-2^2\right)\cdot5^2\cdot\left(5+2^2\right)\)

\(=5^4\cdot9=5^3\cdot45⋮45\)(đpcm)

22 tháng 6 2018

https://olm.vn/hoi-dap/question/914244.html