TÌm x,y,z
\(\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{z}{12}\) và xyz = 20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phân thức số 2 có thật sự là $\frac{z}{y-2}$ không bạn? Bạn xem lại đề.
\(\dfrac{4}{x+1}=\dfrac{2}{y-2}=\dfrac{3}{z+2}\)
=>\(\dfrac{x+1}{4}=\dfrac{y-2}{2}=\dfrac{z+2}{3}=k\)
=>x+1=4k; y-2=2k; z+2=3k
=>x=4k-1; y=2k+2; z=3k-2
xyz=12
=>(4k-1)(2k+2)(3k-2)=12
=>(4k-1)(k+1)(3k-2)=6
=>(4k-1)(3k^2-2k+3k-2)=6
=>(3k^2+k-2)(4k-1)=6
=>12k^3-3k^2+4k^2-k-8k+2-6=0
=>12k^3+k^2-9k-7=0
=>
\(\dfrac{4}{x+1}=\dfrac{2}{y-2}=\dfrac{3}{z+2}\)
=>\(\dfrac{x+1}{4}=\dfrac{y-2}{2}=\dfrac{z+2}{3}=k\)
=>x+1=4k; y-2=2k; z+2=3k
=>x=4k-1; y=2k+2; z=3k-2
xyz=12
=>(4k-1)(2k+2)(3k-2)=12
=>(4k-1)(k+1)(3k-2)=6
=>(4k-1)(3k^2-2k+3k-2)=6
=>(3k^2+k-2)(4k-1)=6
=>12k^3-3k^2+4k^2-k-8k+2-6=0
=>12k^3+k^2-9k-4=0
=>k=1
=>x=4k-1=3; y=2k+2=4; z=3k-2=3-2=1
a, Ta có :
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\Rightarrow\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{4+9-4}=\dfrac{50-5}{9}=5\)
\(\Rightarrow x=11;y=17;z=23\)
b, Đặt \(\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\Rightarrow xyz=810\)
\(\Rightarrow2k.3k.5k=810\Leftrightarrow30k^3=810\Leftrightarrow k^3=27\Leftrightarrow k=3\)
\(\Rightarrow x=6;y=9;z=15\)
a) Ta có: \(\dfrac{x-1}{2}=\dfrac{2x-2}{4};\dfrac{y-2}{3}=\dfrac{3y-6}{9};\dfrac{z-3}{4}\)
Áp dụng t/c dtsbn:
\(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}=\dfrac{2x-2+3y-6-z+3}{4+9-4}=5\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}=5\\\dfrac{y-2}{3}=5\\\dfrac{z-3}{4}=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=11\\y=17\\z=12\end{matrix}\right.\)
b) Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)
xyz = 810
=> 2k.3k.5k = 810
=> k = 3
\(\Rightarrow\left\{{}\begin{matrix}x=6\\y=9\\z=15\end{matrix}\right.\)
a: Áp dụng tính chất của DTSBN, ta được:
x/5=y/2=(x-y)/(5-2)=9/3=3
=>x=15; y=6
b: =>(x-3)/12=3/(x-3)
=>(x-3)^2=36
=>(x-9)(x+3)=0
=>x=9 hoặc x=-3
c; x/2=y/3
=>x/10=y/15
y/5=z/4
=>y/15=z/12
=>x/10=y/15=z/12=(x-y-z)/(10-15-12)=-49/-17=49/17
=>x=490/17; y=735/17; z=588/17
Bài 1:
Ta có: \(3x=2y\)
nên \(\dfrac{x}{2}=\dfrac{y}{3}\)
mà x+y=-15
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)
Vậy: (x,y)=(-6;-9)
Bài 2:
a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
mà x+y-z=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)
Vậy: (x,y,z)=(40;30;50)
Đặt \(\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{z}{12}=k\Rightarrow\left\{{}\begin{matrix}x=5k\\y=9k\\z=12k\end{matrix}\right.\)
=> x.y.z = 5k.9k.12k <=> 540k3 = 20
k3 = 20:540
k3 = \(\dfrac{1}{27}\)
<=> \(\dfrac{1}{27}=\dfrac{1^3}{3^3}\) => k = \(\dfrac{1}{3}\)
\(\left\{{}\begin{matrix}x=5k=5.\dfrac{1}{3}=\dfrac{5}{3}\\y=9k=9.\dfrac{1}{3}=3\\z=12k=12.\dfrac{1}{3}=4\end{matrix}\right.\)
Vậy x=5/3 ; y=3 và z=4
Lời giải:
Ta có:
\(\frac{x}{5}=\frac{y}{9}=\frac{z}{12}\Rightarrow \left(\frac{x}{5}\right)^3=\left(\frac{y}{9}\right)^3=\left(\frac{z}{12}\right)^3=\frac{x}{5}.\frac{y}{9}.\frac{z}{12}=\frac{20}{540}=\frac{1}{27}=\left(\frac{1}{3}\right)^3\)
\(\Rightarrow \left\{\begin{matrix} \frac{x}{5}=\frac{1}{3}\\ \frac{y}{9}=\frac{1}{3}\\ \frac{z}{12}=\frac{1}{3}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{5}{3}\\ y=3\\ z=4\end{matrix}\right.\)
Vậy \((x,y,z)=(\frac{5}{3};3;4)\)