Bài 1: tìm x, biết:
a) \(x^2+4x+11=2015^{2018}+2010^{2017}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu x chắn => x2 \(⋮\) 4 mà 4x \(⋮\) 4
=> VT chia 4 dư 3
2015 chia 4 dư 1 => 20152018 chia 4 dư 1
2010 chia 4 dư 2 => 20102017 chia hết cho 4
=> VP chia 4 dư 1 => vô n0
Nếu x lẻ thì VT chia hết cho 4 VP ko chia hết => vô n0
Vậy pt vô n0
Bài 1 : dễ bạn tự làm được :)
Bài 2 :
Ta có :
\(B=\frac{2015+2016+2017}{2016+2017+2018}=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Vì :
\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)
\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)
\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)
Nên \(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
\(\Leftrightarrow\)\(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015+2016+2017}{2016+2017+2018}\)
\(\Leftrightarrow\)\(A>B\)
Vậy \(A>B\)
Chúc bạn học tốt ~
Ta có : B = 2016 + 2017 + 2018 2015 + 2016 + 2017 = 2016 + 2017 + 2018 2015 + 2016 + 2017 + 2018 2016 + 2016 + 2017 + 2018 2017 Vì : 2016 2015 > 2016 + 2017 + 2018 2015 2017 2016 > 2016 + 2017 + 2018 2016 2018 2017 > 2016 + 2017 + 2018 2017 Nên 2016 2015 + 2017 2016 + 2018 2017 > 2016 + 2017 + 2018 2015 + 2016 + 2017 + 2018 2016 + 2016 + 2017 + 2018 2017 ⇔ 2016 2015 + 2017 2016 + 2018 2017 > 2016 + 2017 + 2018 2015 + 2016 + 2017 ⇔A > B Vậy A > B Chúc bạn học tốt ~
=> (x+2020)/5=(x+2020)/6=(x+2020)/3+(x+2020)/2
=>(x+2020)(1/5+1/6)=(x+2020)(1/3+1/2)
Với x+2020=0=>x=-2020
Với x+2020 khác 0=>1/5+1/6=1/3+1/2 ,vô lí
Vậy x=-2020
Bài 1: tìm x thuộc tập hợp N, biết
A) 6x +4x=2010
6 * x + 4 * x = 2010
(6 + 4) * x = 2010
10 * x = 2010
x= 2010 : 10
x= 201
B) (x-10) ×11=0
\(\Rightarrow\)x - 10 = 0
x = 0 + 10
x = 10
Bài 2: tìm x,y thuộc N, biết
A) x×y-2x=0
\(\Rightarrow x\)= 0
B) (x-4)×(x-3)=0
\(\Rightarrow\)x - 4 = 0
x = 0 + 4
x = 4
Bài 3: tính tổng
A) S=1+2+...+2000
Số các số hạng: (2000 - 1) : 1 + 1= 2000 (số)
Tổng: (2000 + 1) * 2000 : 2 = 2 001 000
B) S= 2+4+...+2010
Số các số hạng: (2010 - 2) : 2 +1= 1005 (số)
Tổng: (2010 + 2) * 1005 : 2 = 1 011 030
C) S=1+3+...+2011
Số các số hạng; (2011 - 1) : 2 +1 = 1006 (số)
Tổng: (2011 +1) * 1006 : 2 = 1 012 036
D) 5+10+15+...+2015
Số các số hạng: (2015 - 5) : 5 + 1 = 403 (số)
Tổng: (2015 + 5) * 403 :2 = 407 030
E) 3+6+...+2010
Số các số hạng: (2010 - 3) : 3 +1 = 670 (số)
Tổng: (2010 + 3) * 670 : 2 = 674 355
G)4+8+12+...+2012
Số các số hạng: (2012 - 4) : 4 + 1 = 503 (số)
Tổng: (2012 + 4) * 503 : 2 = 507 024
Ta có: \(N\left(x\right)=x^{2017}-2018x^{2016}+2018x^{2015}-...-2018x^2+2018x-1\)
\(=x^{2017}-2018\left(x^{2016}-x^{2015}+...+x^2-x\right)-1\)
\(\Rightarrow N\left(2017\right)=2017^{2017}-2018\left(2017^{2016}-2017^{2015}+...+2017^2-2017\right)-1\)
Đặt \(A=2017^{2016}-2017^{2015}+...+2017^2-2017\)
\(\Rightarrow2017A=2017^{2017}-2017^{2016}+...+2017^3-2017^2\)
\(\Rightarrow2018A=2017^{2017}-2017\)
\(\Rightarrow A=\dfrac{2017^{2017}-2017}{2018}\)
\(\Rightarrow N\left(2017\right)=2017^{2017}-2018.\dfrac{2017^{2017}-2017}{2018}-1\)
\(=2017^{2017}-\left(2017^{2017}-2017\right)-1\)
\(=2017^{2017}-2017^{2017}+2017-1\)
\(=2016\)
Vậy N(2017) = 2016