K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2017

B A C M N K G

Giải:

b) Vì tg ABC cân tại B => AB = BC

=> \(\dfrac{1}{2}AB=\dfrac{1}{2}BC\Rightarrow AM=CN\)

=> tứ giác AMNC là hthang cân (đpcm)

c) Vì MN là đường tb của tg ABC => MN//AC => MN // AK (1)

và MN = 1/2 AC

=> MN = AK (BK là đường trung tuyến) (2)

Từ (1) và (2) => AMNK là hbh

d) Tam giác ABC là tam giác đều thì AMNK là hình thoi

5 tháng 11 2017

๖ۣۜĐặng♥๖ۣۜQuý , Nguyễn Huy Tú, An Nguyễn Bá, lê thị hương giang, Hoàng Thị Ngọc Mai, Toshiro Kiyoshi, ...

9 tháng 7 2020

vẽ giúp mình hình luônn nhess

Cho 2 cái hình vì con chưa hc lp 8.

Bài 1 

  A B C M N

Bài 2 :  G A B C M D E

16 tháng 12 2017

mk hướng dẫn câu a) sử dụng tích chất đường trung bình của tam giác 

\(\Rightarrow DE\)SONG SONG VỚI \(BC\)

MÀ \(BF\)CHÍNH LÀ \(BC\)

\(\Rightarrow DE\)SONG SONG \(BF\)

\(\Rightarrow EF\backslash\backslash BD\)

\(\Rightarrow\) tứ giác \(BDEF\)LÀ HÌNH BÌNH HÀNH

16 tháng 12 2017

a. Xét tam giác ABC có: AD=BD; AE=CE

=> DE là đường trung bình của tam giác ABC => DE//BC; DE=1/2BC

• DE//BC nên DE//BF

• DE=1/2BC và BF=1/2BC nên DE=BF

Xét tứ giác BDEF có: DE//BF; DE=BF

=> BDEF là hbh

b. Xét tam giác ABC có: AD=BD; BF=CF

=> DF là đường tb của tam giác ABC

=> DF//AC; DF=1/2AC

Mà AE=1/2AC nên DF=AE

Xét tứ giác ADEF có DF//AE: DF=AE

=> ADEF là hbh

=> DF=AE (1)

Xét tam giác vuông AKC có KE là đường trung tuyến ứng với cạnh huyền

=> KE=1/2AC=AE (2)

Từ (1) và (2) => DF=KE

Xét tứ giác DEFK có KF//DE=> DEFK là hình thang

Xét hình thang DEFK có DF=KE

=> DEFK là hình thang cân

15 tháng 10 2023

Trên tia đối của tia MP lấy D sao cho M là trung điểm của PD

Xét tứ giác BPCD có

M là trung điểm chung của BC và PD

nên BPCD là hình bình hành

=>BP=CD và BP//CD

mà BP=CQ(GT)

nên CD=CQ

=>\(\widehat{CDQ}=\widehat{CQD}=\dfrac{180^0-\widehat{QCD}}{2}\)

BP//CD

=>AB//CD

=>\(\widehat{DCQ}=\widehat{IAK}\)

Xét ΔPDQ có

M,N lần lượt là trung điểm của PD,PQ

=>MN là đường trung bình

=>MN//DQ

=>IK//DQ

=>\(\widehat{CQD}=\widehat{AKI}\)

=>\(\widehat{AKI}=\widehat{AIK}\)

=>ΔAKI cân tại A

1 tháng 7 2019

4) Gọi P, Q lần lượt là tâm của các đường tròn ngoại tiếp tam giác MBK, tam giác MCK và E là trung điểm của đoạn PQ. Vẽ đường kính ND của đường tròn (O) . Chứng minh ba điểm D, E, K thẳng hàng.

Vì N là điểm chính giữa cung nhỏ BC nên DN là trung trực của BC nên DN là phân giác  B D C ^

Ta có  K Q C ^ = 2 K M C ^  (góc nọi tiếp bằng nửa góc ở tâm trong dường tròn (Q))

N D C ^ = K M C ^  (góc nội tiếp cùng chắn cung  N C ⏜ )

Mà  B D C ^ = 2 N D C   ^ ⇒ K Q C ^ = B D C ^

Xét 2 tam giác BDC & KQC là các các tam giác vuông tại D và Q có hai góc ở  ⇒ B C D ^ = B C Q ^  do vậy D, Q, C thẳng hàng nên KQ//PK

Chứng minh tương tự ta có  ta có D, P, B thẳng hàng và DQ//PK

Do đó tứ giác PDQK là hình bình hành nên E là trung điểm của PQ cũng là trung điểm của DK. Vậy D, E, K thẳng hàng (điều phải chứng minh).

6 tháng 1 2018

a) Học sinh tự làm

b) Chứng minh A N 1 2 N C ⇒ S A M E = S A E N ⇒ E M = E N  

hay E là trung điểm MN.

c) Chứng minh được EG//HF và HE/FG nên EHFG là hình bình  hành; Mặt khác BM ^ NC (do AB ^ AC)

Suy ra EHFG là hình chữ nhật