K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2017

Gọi số đo ba góc A; B; C lần lượt là:
A ; B; C

Vì A, B , C tỉ lệ thuận với 7, 7, 16 và A+B+C=1800(tổng ba góc của một tam giác)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\dfrac{A}{7}\)+\(\dfrac{B}{7}\)+\(\dfrac{C}{16}\)=\(\dfrac{A+B+C}{7+7+16}\)=\(\dfrac{180}{30}\)=6

\(\dfrac{A}{7}\)=6 ⇒A= 7.6=42

\(\dfrac{B}{7}=6\Rightarrow B=7.6=42\)

\(\dfrac{C}{16}=6\Rightarrow\)C=16.6=96
Vậy số đó các góc A;B;C lần lượt là:
42 độ ; 42độ; 96 độ

(Mình không biết ghi cái kí hiệu độ nên bạn xem đỡ nha)

A B C 60 o 50 o D

Bài làm

a) Xét tam giác ABC ta có:

\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)( Tổng ba góc trong tam giác )

hay \(60^0+\widehat{B}+50^0=180^0\)

=> \(\widehat{B}=180^0-60^0-50^0\)

=> \(\widehat{B}=70^0\)

Vậy \(\widehat{B}=70^0\)

b) Vì BD là tia phân giác góc B

=> \(\widehat{ABD}=\widehat{DBC}=\frac{\widehat{ABC}}{2}=\frac{70^0}{2}=35^0\)

Vậy \(\widehat{ABD}=35^0\)

Xét tam giác BDC có: 

\(\widehat{BDC}+\widehat{C}+\widehat{CDB}=180^0\)( Tổng ba góc trong tam giác )

hay \(35^0+50^0+\widehat{CDB}=180^0\)

=> \(\widehat{CDB}=180^0-35^0-50^0\)

=> \(\widehat{CDB}=95^0\)

Vậy \(\widehat{CDB}=95^0\)

# Học tốt #

a) Theo định lí tổng ba góc trong một tam giác

\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)

Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)

           60o +\(\widehat{B}\)+ 50o = 180o

                   \(\widehat{B}\)           = 180o - (60o + 50o)

                   \(\widehat{B}\)           = 70o

b)


A B C 60 50 D

*\(\widehat{ABD}\)

Vì BD là tia phân giác của tam giác ABC nên \(\widehat{ABD}\)=\(\widehat{DBC}\)=\(\frac{\widehat{B}}{2}\)=\(\frac{70}{2}\)= 35

Vậy \(\widehat{ABD}\)= 35o

*\(\widehat{CDB}\)

Theo định lí tổng ba góc trong một tam giác

\(\widehat{C}+\widehat{D}+\widehat{B}=180^o\)

Ta có \(\widehat{BCD}+\widehat{CDB}+D\widehat{BC}=180^o\)

         50o +\(\widehat{CDB}\)+ 35o = 180o

                  \(\widehat{CDB}\)          = 180o - (50o + 35o)

                  \(\widehat{CDB}\)          = 95o

Vậy \(\widehat{CDB}\)= 95o

27 tháng 1 2017

A B C M N

ta có góc C = 180-80-60=400

Ta có :

\(\widehat{ACN}+\widehat{ACB}=180^0\\ \Rightarrow\widehat{ACN}=180^0-40^0=140^0\)

Ta lại có : CA=CN

=> tam giác ACN cân

=> \(\widehat{CAN}=\widehat{N}\)

\(\Rightarrow\widehat{CAN}+\widehat{N}=180^0-140^0=40^0\\ \Rightarrow\widehat{CAN}=\widehat{N}=20^0\)

\(\widehat{ABM}+\widehat{B}=180^0\\ \Rightarrow\widehat{ABM}=180^0-60^0=120^0\)

Ta lại có :

BA=BM => tam giác ABM cân

=> \(\widehat{MAB}=\widehat{M}\\ \Rightarrow\widehat{MAB}+\widehat{M}=180^0-120^0=60^0\\ \Rightarrow\widehat{MAB}=\widehat{M}=30^0\)

\(\widehat{A}\) của tam giác AMN = \(20^0+30^0+80^0=130^0\)

Chúc bạn học tốt !!!

22 tháng 11 2018

Theo đề: 1/2 số đo góc A băng 2/3 số đo góc B và bằng số đo góc C

\(\Rightarrow\frac{\widehat{A}}{2}=\frac{2.\widehat{B}}{3}=\widehat{C}\)

\(\Rightarrow\frac{\widehat{A}}{4}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{2}\)

Mặt khác tỏng số đo 3 góc trong của tam giác bằng 180o => A+B+C=180o

Áp dụng tính chất của dãy tỉ số bằng nhau ta có

\(\frac{\widehat{A}}{4}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{2}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{4+3+2}=\frac{180^o}{9}=20^o\)

khi đó góc A=80o; B=60o;C=40o

22 tháng 11 2018

Thanks bạn!!

22 tháng 11 2018

Vì tổng số đo ba góc A, B, C của \(\Delta ABC\)là 180o (Theo định lí tổng ba góc của một tam)

            nên \(\widehat{A}+\widehat{B}+\widehat{C}=180^O\)

Vì \(\Delta ABC\) có \(\frac{1}{2}\)số đo góc A bằng \(\frac{2}{3}\)số đo góc B bằng số đo góc C

      nên \(\frac{1}{2}\widehat{A}=\frac{2}{3}\widehat{B}=\widehat{C}\)

       \(\Rightarrow\frac{\widehat{A}}{2}=\frac{2\widehat{B}}{3}=\widehat{\frac{C}{1}}\)

       \(\Rightarrow\frac{\widehat{A}}{2}\cdot\frac{1}{2}=\frac{2\widehat{B}}{3}\cdot\frac{1}{2}=\widehat{\frac{C}{1}}\cdot\frac{1}{2}\)

       \(\Rightarrow\frac{\widehat{A}}{4}=\frac{\widehat{B}}{3}=\widehat{\frac{C}{2}}\) 

Áp dụng t/c của dãy TSBN ta có:

   \(\frac{\widehat{A}}{4}=\frac{\widehat{B}}{3}=\widehat{\frac{C}{2}}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{4+3+2}=\frac{180^O}{9}=20^O\) 

Suy ra: \(\widehat{A}=20^o\cdot4=80^o\)

            \(\widehat{B}=20^o\cdot3=60^o\)

           \(\widehat{C}=20^o\cdot2=40^o\)

Vậy số đo các góc A, B, C của \(\Delta ABC\) lần lượt là 80o, 60o, 40o

19 tháng 2 2018

A B C I
a) Gọi \(\widehat{ABI}=\widehat{IBC}=y\);\(\widehat{ACI}=\widehat{ICB}=x\)
Xét tam giác ABC ta có:
\(\widehat{CAB}+\widehat{ACB}+\widehat{CBA}=180^o\)\(\Rightarrow\widehat{ACB}=2x;\widehat{ABC}=2y\)
\(\Leftrightarrow60^o+2y+2x=180^o\)
\(\Leftrightarrow2x+2y=120^o\)
\(\Leftrightarrow x+y=60^o\)(1)
Do \(\widehat{ABC}=2\widehat{ACB}\Rightarrow2y=2.2x\Leftrightarrow y=2x\)(2)
Từ (1) và (2) suy ra \(x=20^o;y=40^o\)
Vậy \(\widehat{ACB}=2x=40^o\)
b)Xét tam giác BIC ta có:
\(\widehat{BIC}+\widehat{ICB}+\widehat{IBC}=180^o\)
\(\Leftrightarrow\widehat{BIC}+20^o+40^o=180^o\)
\(\Leftrightarrow\widehat{BIC}=120^o\)
 

19 tháng 2 2018

cac ban giup minh nha

3 tháng 2 2017

Vì tam giác ABC cân tại A => AB=AC

Mà AC=2cm

=> AB=2cm 

Ta có: AB=AC=BC=2cm

=> tam giác ABC là tam giác đều 

=> góc A= góc B= góc C= 60 độ

7 tháng 12 2016

mi tích tau tau tích mi xong tau trả lời nka việt nam nói là làm

8 tháng 12 2016

Xi ko them nha thang kia