Tìm giá trị lớn nhất của biểu thức 5-/3x-4/ là số nào?
Tìm giá trị nhỏ nhất của biểu thức (4x-6)^2008+8 là số nào?
HELPPPPP,GẤP LẮM,MIK CẢM ƠN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5-/3x-4/
ta có: /3x-4/\(\ge0,\forall x\)
\(\Rightarrow\)5-/3x-4/\(\le5\)
Dấu "=" xảy ra khi 3x-4=0 =>3x=4 =>\(x=\frac{3}{4}\)
Vậy GTNL của 5-/3x-4/ là 5 với x=\(\frac{3}{4}\)
\(\left(4x-6\right)^{2008}+8\)
ta có: \(\left(4x-6\right)^{2008}\ge0,\forall x\)
\(\Rightarrow\left(4x-6\right)^{2008}+8\ge8\)
dấu "=" xảy ra khi (4x-6)2008=0
=> 4x-6=0 =>4x=6 =>x=\(\frac{3}{2}\)
vậy GTNN của (4x-6)2008 là 8 với x=\(\frac{3}{2}\)
\(A=2x^2+4x+1=2\left(x^2+2x+1\right)-1=2\left(x+1\right)^2-1\ge-1\)
\(A_{min}=-1\) khi \(x=-1\)
Câu B chỉ có max, ko có min
\(B=-x^2+3x+4=-\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{25}{4}=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\)
\(B_{max}=\dfrac{25}{4}\) khi \(x=\dfrac{3}{2}\)
Câu C cũng chỉ có max, không có min
\(C=-4x^2+8x=-4\left(x^2-2x+1\right)+4=-4\left(x-1\right)^2+4\le4\)
\(C_{max}=4\) khi \(x=1\)
Câu D cũng chỉ có max, không có min
\(D=\dfrac{3}{4x^2-4x+1+4}=\dfrac{3}{\left(2x-1\right)^2+4}\le\dfrac{3}{4}\)
\(C_{max}=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\)
(4 câu có 3 câu sai đề)
Nhầm đề bài Sorrry
đáng lẽ là ntn này giúp con dc ko ạ
\(\dfrac{3}{4x^{2_-}4x+5}\) Giúp con :(
a) Ta có: \(\left(2x-4\right)^4\ge0\forall x\)
\(\Leftrightarrow\left(2x-4\right)^4+5\ge5\forall x\)
Dấu '=' xảy ra khi 2x-4=0
\(\Leftrightarrow2x=4\)
hay x=2
Vậy: Giá trị nhỏ nhất của biểu thức \(M=\left(2x-4\right)^2+5\) là 5 khi x=2
b) Ta có: \(\left|x+2\right|\ge0\forall x\)
\(\Leftrightarrow-\left|x+2\right|\le0\forall x\)
\(\Leftrightarrow\left|x+2\right|+10\le10\forall x\)
Dấu '=' xảy ra khi x+2=0
hay x=-2
Vậy: Giá trị lớn nhất của biểu thức \(N=10-\left|x+2\right|\) là 10 khi x=-2
Đặt \(A=5-\left|3x-4\right|\)
Ta có \(\left|3x-4\right|\ge0\) \(\forall x\)
\(\Rightarrow-\left|3x-4\right|\le0\) \(\forall x\)
\(\Rightarrow5-\left|3x-4\right|\le0+5\) \(\forall x\)
(Nếu bn ko hiểu dòng 4 thì mình giải thích ntn:
\(-\left|3x-4\right|+5\le0+5\)
hay \(5-\left|3x-4\right|\le0+5\))
Tiếp nè
\(\Rightarrow A\le5\)
\(\Rightarrow A_{max}=5\) khi \(\left|3x-4\right|=0\)
\(\Rightarrow3x-4=0\)
\(3x=4\)
\(x=\dfrac{4}{3}\)
Vậy \(A_{max}=5\) khi \(x=\dfrac{4}{3}\)
Đặt \(B=\left(4x-6\right)^{2008}+8\)
Ta có: \(\left(4x-6\right)^{2008}\ge0\) \(\forall x\)
\(\Rightarrow\left(4x-6\right)^{2008}+8\ge0+8\)
\(\Rightarrow B\ge8\)
\(\Rightarrow B_{min}=8\) khi \(\left(4x-6\right)^{2008}=0\)
\(\Rightarrow4x-6=0\)
\(4x=6\)
\(x=1,5\)
Vậy \(B_{min}=8\) khi \(x=1,5\)
Chúc bn học tốt