Tìm tất cả các số tự nhiên n để:
a/ (15+7n) chia hết cho n
b/ (n+28) chia hết cho (n+4)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có 7n chia hết cho n thì 15 phải chia hết cho n, tức n thuộc tập ước của 15, học sinh tự lập bảng để tìm giá trị của n.
b) n + 28 = n + 4 + 26, có n + 4 chia hết cho n + 4 thì 26 phải chia hết cho n + 4, tức n + 4 thuộc tập ước của 26, học sinh tự lập bảng để tìm giá trị của n
\(a,\Rightarrow n\inƯ\left(5\right)=\left\{1;5\right\}\\ b,\Rightarrow n\inƯ\left(4\right)=\left\{1;2;4\right\}\\ c,\Rightarrow n\inƯ\left(27\right)=\left\{1;3\right\}\left(n< 7\right)\)
câu a mik doi mik suy nghi da
b)(n+28)/(n+4)=(n+4+24)/n+4
=1+24/n+4
=> 24 chia het n+4
Ban tim tung uoc cua 24 roi suy ra n nha
a )
15 + 7n chia hết cho n
=> 15 chia hết cho n
=> n thuộc Ư(15)
a) Tổng ba số tự nhiên liên tiếp có dạng như sau:
(1k+1 )+ (1k+ 2) + (1k + 3) = 1k6
Mà 1k6 chia hết cho 3 (6 chia hết cho 3)
Nên tổng ba số tự nhiên liên tiếp chia hết cho 3
b) Tổng bốn số tự nhiên liên tiếp có dạng:
(1k + 1 ) + (1k + 2) + (1k + 3) + (1k + 4) = 1k10
1k10 không chia hết cho 4 nên tổng bốn số tự nhiên liên tiếp ko chia hết cho 4
16)
a) (15 + 7n) chia hết cho n
Theo quy tắc thì nếu (a + b) chia hết cho k thì a và b đều chia hết cho k
Vậy 15 chia hết cho 5 (bỏ đi 7n vì ở đây vẫn là n ẩn 0
Suy ra n thuộc U(15)
Ư(15) = { 1 ; 3 ; 5 ; 15 }
Thử lần lượt các số trên với 7n: bằng cách đem: 7n chia n
Ta có: 71 chia hết cho 1 ( 1 là n) => Chọn
73 không chia hết cho 3 (3 là n) => Bỏ chọn
75 chia hết cho 5 ..tương tự như trên.. => Chọn
7(15) vượt quá số có 2 chữ số => Bỏ chọn
Vậy n được là: 1 và 5
b) Tương tự như trên
17) 66a + 55b = 111 011?
Nhận xét: 111 011? là số có 7 chữ số
Mà trong khi 66a + 55b đều là số có 2 chữ số => Tổng trên tối đa là 4 chữ số.
4 < 7 => Không thể tìm được số tự nhiên a và b để thỏa mãn yêu cầu trên
17
Vì 66a + 55b = 111 011
11.6a+11.5b=111011
11.(6a+5b) =111011
11*11ab=111011
mà 111011 không chia hết cho 11
==>Không thể tìm được a và b
1) a) Ta có :
15 + 7n chia hết cho n
mà n chia hết cho n
nên 7n chia hết cho n
=> (15 + 7n ) - 7n chia hết cho n
=> 15 chia hết cho n
=> n thuộc Ư(15) nên n = 1 ; -1 ; 3 ; -3 ; 5 ; -5 ;15 ; -15
b) Ta có :
n + 28 chia hết cho n +4
mà n+4 chia hết cho n+4
nên n+28 - (n+4) chia hết cho n+4
=> 32 chia hết cho n+4
=>n+4 thuộc Ư(32) nên n+4=-1;1;-2;2;-4;4;8;-8;16;-16;32;-32
=> n lần lượt = -5;-3;-6;-2;-8;0;4;-12;12;-20;28;-36
phần 2 dài quá vs m cx không chắc đúng nên làm phần 3 luôn
3) vì số tự nhiên chia cho 18 dư 12 có dạng là : 18k + 12
mà 18 chia hết cho 6
và 12 chia hết cho 6
nên 18k + 12 chia hết cho 6
Vậy không tồn tại số tự nhiên chia cho 18 dư 12 , còn chia 6 dư 2
2. Vì 66a + 55b = 111 011
11.6a+11.5b=111011
11.(6a+5b) =111011
11*11ab=111011
mà 111011 không chia hết cho 11
==>Không thể tìm được a và b
a)\(\begin{cases} 2n+1⋮n\\ n⋮n=>2n⋮n \end{cases}\)=> (2n+1)-2n⋮n
<=> 1⋮n
=> n∈Ư(1) => n={1;-1}
b)\(\begin{cases} n+3⋮n+1\\ n+1⋮n+1 \end{cases}\)=> (n+3)-(n+1)⋮ n+1
<=> 2⋮ n+1
=> n+1∈Ư(2)
=> n+1={2;-2;1;-1}
=> n={1;-3;0;-2}
Bài 5:
b: Ta có: \(n+6⋮n+2\)
\(\Leftrightarrow n+2\in\left\{2;4\right\}\)
hay \(n\in\left\{0;2\right\}\)
c: Ta có: \(3n+1⋮n-2\)
\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)
hay \(n\in\left\{1;3;9\right\}\)
7n + 24 chia hết cho n + 1
⇒7n + 7 + 17 chia hết cho n + 1
⇒7(n + 1) + 17 chia hết cho n + 1
⇒17 chia hết cho n + 1
⇒n + 1 ∈ Ư(17) = {1; -1; 17; -17}
Mà n ∈ N
⇒n + 1 ∈ {1; 17}
⇒n ∈ {0; 16}
Vậy ...
7n + 24 = 7n + 7 + 17 = 7(n + 1) + 17
Để (7n + 24) ⋮ (n + 1) thì 17 ⋮ (n + 1)
⇒ n + 1 ∈ Ư(17) = {-17; -1; 1; 17}
⇒ n ∈ {-18; -2; 0; 16)
Mà n ∈ ℕ
⇒ n ∈ {0; 16}
+) \(3\left(n+1\right)+11⋮n+3\)
\(11⋮n+3\)
\(n+3\inƯ\left(11\right)=\left\{1;11\right\}\)
\(n=8\)
+) \(3n+16⋮n+4\)
\(3\left(n+4\right)+4⋮n+4\)
\(4⋮n+4\)
\(n+4\inƯ\left(4\right)=\left\{1;2;4\right\}\)
\(n=0\)
+) \(28-7n⋮n+3\)
\(49-7\left(n+3\right)⋮n+3\)
\(49⋮n+3\)
\(n+3\inƯ\left(49\right)=\left\{1;7;49\right\}\)
\(n\in\left\{4;46\right\}\)