ĐKXĐ: \(x>0;x\ne4\)
B = \(\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
tìm x để : \(3B>\) \(\sqrt{x}+2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=x-\sqrt{x}\)
\(P=x-2\cdot\sqrt{x}\cdot\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\)
\(P=\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{1}{4}\ge\frac{-1}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{4}\)( thỏa )
Vậy \(minP=\frac{-1}{4}\Leftrightarrow x=\frac{1}{4}\)
\(ĐKXĐ:x\ne-1\)
\(A=\frac{x}{x+1}-\frac{3-3x}{x^2-x+1}+\frac{x+4}{x^3+1}\)
\(=\frac{x\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{\left(x+1\right)\left(3x-3\right)}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{x+4}{x^3+1}\)
\(=\frac{x^3-x^2+x}{x^3+1}+\frac{3x^2-3}{x^3+1}+\frac{x+4}{x^3+1}\)
\(=\frac{x^3-x^2+x+3x^2-3+x+4}{x^3+1}\)
\(=\frac{x^3+2x^2+2x+1}{x^3+1}\)
\(=\frac{\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{\left(x+1\right)\left(x^2+x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{x^2+x+1}{x^2-x+1}\)
Ta có: \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
và \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
\(\Rightarrow\frac{x^2+x+1}{x^2-x+1}>0\forall xt/m\)(đpcm)
d) Để |A| = 5
\(\Leftrightarrow\orbr{\begin{cases}x^2+x+2=5\left(x+2\right)\\x^2+x+2=-5\left(x+2\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+x+2=5x+10\\x^2+x+2=-5x-10\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-4x-8=0\\x^2+6x+12=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-2\right)^2-12=0\left(tm\right)\\\left(x+3\right)^2+3=0\left(ktm\right)\end{cases}}\)
\(\Leftrightarrow x=2\pm2\sqrt{3}\)
Vậy để \(\left|A\right|=5\Leftrightarrow x\in\left\{2-2\sqrt{3};2+2\sqrt{3}\right\}\)
Để C<1 thì C-1<0
\(\Leftrightarrow\dfrac{-1-\sqrt{x}+2}{\sqrt{x}-2}< 0\)
\(\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}-2}>0\)
=>x>4 hoặc x<1
a: ĐKXĐ: x>=0; x<>1
\(A=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\cdot\dfrac{2}{x+\sqrt{x}+1}=\dfrac{2}{x+\sqrt{x}+1}\)
b: Vì x+căn x+1>0
nên A>0
Ta có: \(3\cdot B>\sqrt{x}+2\)
\(\Leftrightarrow\dfrac{3\sqrt{x}}{\sqrt{x}-2}-\dfrac{x-4}{\sqrt{x}-2}>0\)
\(\Leftrightarrow\dfrac{3\sqrt{x}-x+4}{\sqrt{x}-2}>0\)
\(\Leftrightarrow\dfrac{x-3\sqrt{x}-4}{\sqrt{x}-2}< 0\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-2}< 0\)
\(\Leftrightarrow4< x\le16\)