Cho hình bình hành ABCD có góc A =120 độ, BA=2AD
a) chứng minh tia phân giác của góc B đi qua trung điểm E của CD.
b) Gọi F là trung điểm của AB, C/m: E
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: BC=2AB
a: \(BE=EC=\dfrac{BC}{2}\)
\(AF=FD=\dfrac{AD}{2}\)
mà BC=AD
nên BE=EC=AF=FD
Xét tứ giác ABEF có
BE//AF
BE=AF
Do đó: ABEF là hình bình hành
mà BE=BA(=1/2BC)
nên ABEF là hình thoi
b: Xét ΔIFA có
FB là đường trung tuyến
\(FB=\dfrac{IA}{2}\)
Do đó: ΔIFA vuông tại F
=>IF\(\perp\) AD
mà AD//BC
nên \(IF\perp BC\)
c: Xét tứ giác BICD có
BI//CD
BI=CD
Do đó: BICD là hình bình hành
=>BC cắt ID tại trung điểm của mỗi đường
mà E là trung điểm của BC
nên E là trung điểm của ID
=>I,E,D thẳng hàng
a, E là trung điểm của AB (gt) \(\Rightarrow AE=EB=\frac{1}{2}AB\)
\(AB=2AD\left(gt\right)\Rightarrow AD=\frac{1}{2}AB\)
Do đó: \(AE=AD\Rightarrow\Delta AED\) cân tại A \(\Rightarrow\widehat{AED}=\widehat{ADE}\) (tính chất tam giác cân) (1)
ABCD là hình bình hành(gt) \(\Rightarrow AB//CD\Rightarrow\widehat{AED}=\widehat{EDC}\) ( 2 góc so le trong ) (2)
Từ (1) và (2) \(\Rightarrow\widehat{ADE}=\widehat{EDC}\) mà tia DE nằm giữa 2 tia DA,DC \(\Rightarrow\)AE là tia phân giác của \(\widehat{ADC}\)
Vậy tia phân giác của \(\widehat{ADC}\) đi qua trung điểm E của AB.
b, ABCD là hình bình hành(gt) \(\Rightarrow AB=DC\)
F là trung điểm của DC (gt) \(\Rightarrow FD=FC=\frac{1}{2}DC=\frac{1}{2}AB=AD\)
Do đó: \(\Delta ADF\) cân tại D
\(AB//DC\left(cmt\right)\Rightarrow\widehat{BAD}+\widehat{ADF}=180^0\)
\(\Rightarrow120^0+\widehat{ADF}=180^0\) (vì \(\widehat{BAD}=120^0\) )
\(\Rightarrow\widehat{ADF}=60^0\)
Ta có: \(\Delta ADF\) cân tại D và \(\widehat{ADF}=60^0\left(cmt\right)\Rightarrow\Delta ADF\) đều
\(\Rightarrow AF=DF=AD\) \(\left(ĐN\right)\)
Mặt khác, DF = 1/2 DC nên AF = 1/2 DC
\(\Delta ADC\)có trung tuyến AF = 1/2 DC nên \(\Delta ADC\)vuông tại A
Vậy \(AD\perp AC.\)
Mong bạn hiêu bài và chúc bạn học tốt.
1: Xét ΔADE vuông tại D có \(\widehat{DAE}=\widehat{DEA}\left(=\widehat{EAB}\right)\)
nên ΔADE vuông cân tại D
Suy ra: AD=DE
mà DC=2DE
nên DC=2AD
hay AB=2AD
2: Ta có: ΔADE vuông cân tại D
mà DN là đường trung tuyến ứng với cạnh huyền AE
nên DN là đường cao ứng với cạnh AE
Bài 2:
AK=AB/2
CI=CD/2
mà AB=CD
nên AK=CI
Xét tứ giác AKCI có
AK//CI
AK=CI
Do đó: AKCI là hình bình hành
=>AC cắt KI tại trung điểm của mỗi đường(1)
ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường(2)
Từ (1) và (2) suy ra AC,KI,BD đồng quy
Bài 1:
a: \(\widehat{ADE}=\widehat{EDF}=\dfrac{1}{2}\cdot\widehat{ADC}\)
\(\widehat{ABF}=\widehat{CBF}=\dfrac{1}{2}\cdot\widehat{ABC}\)
mà \(\widehat{ADC}=\widehat{ABC}\)
nên \(\widehat{ADE}=\widehat{EDF}=\widehat{ABF}=\widehat{CBF}\)
Xét ΔEAD và ΔFCB có
\(\widehat{A}=\widehat{C}\)
AD=CB
\(\widehat{EDA}=\widehat{FBC}\)
Do đó: ΔEAD=ΔFCB
=>\(\widehat{AED}=\widehat{CFB}\)
=>\(\widehat{EDF}=\widehat{CFB}\)
mà hai góc này đồng vị
nên DE//BF
b: Xét tứ giác DEBF có
DE//BF
BE//DF
Do đó: DEBF là hình bình hành