Tìm n thuộc N sao cho 3 . n - 1 chia hết cho 3 - 2 . n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2n-3 chia hết cho n+1
=> 2n+2-5 chia hết cho n+1
=> 2(n+1)-5 chia hết cho n+1
Mà 2(n+1) chia hết cho n+1 => 5 chia hết cho n+1
=> n+1 thuộc Ư(5) ={1;-1;5;-5}
TH1: n+1=1 => n=0 thuộc Z
TH2: n+1=-1 => n=-2 thuộc Z
TH3: n+1=5 => n=4 thuộc Z
TH4: n+1=-5 => n=-6 thuộc Z
=> n thuộc {0;-2;4;6}
a) 2n+1 / 6-n = - (2n -12 + 13/ 6-n) = - (2(6-n) /6-n + 13/ 6-n) = -2 - 13/6-n
Để A( đặt biểu thức đó là A đó) thuộc Z => 13/6-n thuộc Z => 13 chia hết cho 6-n hay 6-n thuộc Ư(13)
=> 6-n thuộc { -13;-1;1;13}
n thuộc { 19; 7; 5; -7} Mà n thuộc N => n = { 19; 7; 5}
b) 3n/ n-1 = 3(n-1) +3 / n-1 = 3(n-1)/ n-1 + 3/n-1 = 3 + 3/n-1
Để B thuộc Z => 3/n-1 thuộc Z => ............. ( bạn làm tương tự như trên)
c) 3n+5/ 2n + 1 = 2n +1 + n + 4 / 2n+1 = 2n+1/ 2n+1 + n+4/ 2n+4 = 1+ 1/2 = 3/2
=> 3n+5 ko chia hết cho 2n+1
a) 6 chia hết cho n-2
n-2
Ta thấy n phải là 1 số chẵn vì vậy để \(6⋮2\)ta có:
n-2 phải là các tập hợi n\(\in\){2,4,,6}
Vậy n là tập hợp các số chẵn n={0,2,4,6,8}
- Để \(n+4⋮n^2+1\)\(\Rightarrow\)\(\left(n+4\right).\left(n-4\right)⋮n^2+1\)
- Ta có: \(\left(n+4\right).\left(n-4\right)=n^2-4=\left(n^2+1\right)-5\)
- Để \(\left(n+4\right).\left(n-4\right)⋮n^2+1\)\(\Leftrightarrow\)\(\left(n^2+1\right)-5⋮n^2+1\)mà \(n^2+1⋮n^2+1\)
\(\Rightarrow\)\(5⋮n^2+1\)\(\Rightarrow\)\(n^2+1\inƯ\left(5\right)\in\left\{\pm1;\pm5\right\}\)
- Vì \(n^2\ge0\forall n\)\(\Rightarrow\)\(n^2+1\ge1\forall n\)
\(\Rightarrow\)\(n^2+1\in\left\{1;5\right\}\)
+ \(n^2+1=1\)\(\Leftrightarrow\)\(n^2=0\)\(\Leftrightarrow\)\(n=0\left(TM\right)\)
+ \(n^2+1=5\)\(\Leftrightarrow\)\(n^2=4\)\(\Leftrightarrow\)\(n=\pm2\)
mà \(n\inℕ\)\(\Rightarrow\)\(n=2\left(TM\right)\)
Vậy \(n\in\left\{0,2\right\}\)
a)
3n+1 chia hết cho 11-n=> -3(-n+11)+34 chia hết cho 11-n
Mà -3(-n+11) chia hết cho 11-n=>34 chia hết cho 11-n=>11-n thuộc U(34)={1,2,17,34,-1,-2,-17,-34} mà n thuộc N =>n thuộc {10,9,12,13,28,45}