K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2015

a)ta có : nếu a= 2/5 thì a=0,4 <=> a+b+c=1 (1)

=> 0,4+b+c=1 => b+c= 0,6 => b=c= 0,3 ( trường hợp b=c) (2)

từ (1) va (2) ta thấy : a\(\ge\)b\(\ge\)c\(\ge\)0 va a+b+c= 1 

vậy a có thể là 2/5 

b) ta có : nếu a=1/5 thì a= 0,2 . vị 0,2>0,1 => b hoặc c bằng 0,1 

nếu b=c thì a+b+c= 0,2+0,1+0,1 = 0,4 \(\ne\) 1

vậy a không thể là 1/5 

c) theo đề bài ta có : vì a là giá trị nhỏ nhất nên a=0,4

thay 0,4 vào đề bài ta có : 0,4+0,3+0,3= 1 ( với b=c=3)

vậy a nhỏ nhất bằng 0,4 

d) theo đề bài ta có :  vì a là giá trị lớn nhất nên a=1 

thay 1 vào đề bài ta có : 1+0+0= 1 ( voi b=c=1 )

vậy a lớn nhất bằng 1

5 tháng 7 2023

a + b, b + c, c + a đều là các số hữu tỉ

=> 2(a + b + c) là số hữu tỉ

=> a + b + c là số hữu tỉ (do khi 1 số hữu tỉ chia cho 2 sẽ nhận đc 1 số hữu tỉ)

=> a + b + c - (a + b) = c là số hữu tỉ; a + b + c - (b + c) = a là số hữu tỉ; a + b + c - (c + a) = b là số hữu tỉ

=> a, b, c đều là số hữu tỉ (đpcm)

27 tháng 9 2021

Ta có: \(a=b+c\Rightarrow c=a-b\)

\(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}=\sqrt{\dfrac{b^2c^2+a^2c^2+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{b^2\left(a-b\right)^2+a^2\left(a-b\right)^2+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{b^4+a^2b^2-2ab^3+a^4+a^2b^2-2a^3b+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{\left(a^2+b^2\right)^2-2ab\left(a^2+b^2\right)+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{\left(a^2+b^2-ab\right)^2}{a^2b^2c^2}}=\left|\dfrac{a^2+b^2-ab}{abc}\right|\)

=> Là một số hữu tỉ do a,b,c là số hữu tỉ

AH
Akai Haruma
Giáo viên
20 tháng 3 2022

Lời giải:
$a+b+c=abc$

$\Rightarrow a(a+b+c)=a^2bc$

$\Leftrightarrow a^2+ab+ac+bc=bc(a^2+1)$

$\Leftrightarrow (a+b)(a+c)=bc(a^2+1)\Leftrightarrow a^2+1=\frac{(a+b)(a+c)}{bc}$
Tương tự với $b^2+1, c^2+1$. Khi đó:

$Q=\frac{(a+b)(a+c)(b+c)(b+a)(c+a)(c+b)}{bc.ac.ab}=[\frac{(a+b)(b+c)(c+a)}{abc}]^2$ là bình phương 1 số hữu tỉ.

Ta có đpcm.

23 tháng 9 2019

Câu hỏi của Trần Đức Tuấn - Toán lớp 9 - Học toán với OnlineMath

23 tháng 3 2022

\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2-2.\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2-2.\dfrac{a+b+c}{abc}=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2-2.\dfrac{0}{abc}=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\)

 

5 tháng 11 2019

\(\frac{1}{a+bc}+\frac{1}{b+ac}=\frac{1}{a+b}\)

\(\Leftrightarrow\frac{\left(a+b\right)\left(c+1\right)}{\left(a+bc\right)\left(b+ac\right)}=\frac{1}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\left(c+1\right)=ab\left(c^2+1\right)+c\left(a^2+b^2\right)\)

\(\Leftrightarrow2abc+a^2+b^2+ab=abc^2\)

\(\Leftrightarrow\left(a^2+b^2+2ba\right)=ab\left(c^2-2c+1\right)\)

\(\Leftrightarrow\left(a+b\right)^2=ab\left(c-1\right)^2\)

\(\Rightarrow ab>0\) , ab là bình phương của số hữu tỉ

\(\Rightarrow c-1=\frac{a+b}{\sqrt{ab}}\)

\(\Rightarrow c+1=\frac{a+b}{\sqrt{ab}}+2=\left(\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}+\sqrt{b}}\right)^2\)

Khi đó : \(\frac{c-3}{c+1}=1-\frac{4}{c+1}=1-\frac{4\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)^2}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}+\sqrt{b}\right)^2}\)

Mà \(\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{a-b}=\frac{a+b-2\sqrt{ab}}{a-b}\) là số hữu tỉ do ab là bình phương của số hữu tỉ 

\(\Rightarrow\frac{c-3}{c+1}\) là bình phương của số hữu tỉ ( đpcm )

11 tháng 4 2021

Bạn ơi sao mà ab la bình phương số hữu tị vậy ạ ?