Cho tam giác HEC. các tia phân giác của góc H và C cắt nhau tại N. Biết HNC= 123° . Tính góc E
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
H E C N 1 2 1 2
Ta có \(H_1=H_2=\frac{H}{2}\)\(;C_1=C_2=\frac{C}{2}\)\(\Rightarrow H+C=2H_2+2C_1=2\left(H_2+C_1\right)\)
Mà \(H_2+C_1=180-HNC=180-123=57\)\(\Rightarrow2\left(H_2+C_1\right)=2.57=114\)
Ta lại có \(E=180-\left(H+C\right)\)
hay \(E=180-2\left(H_2+C_1\right)=180-114=66\)
Vậy \(E=66\)
a, Ta có : \(A:B:C=2:3:4\Rightarrow\frac{A}{2}=\frac{B}{3}=\frac{C}{4}\)
và \(A+B+C=180^0\)(tổng 3 góc trong tam giác)
Theo tính chất dãy tỉ số bằng nhau ta có ;
\(\frac{A}{2}=\frac{B}{3}=\frac{C}{4}=\frac{A+B+C}{2+3+4}=\frac{180}{9}=20\Rightarrow A=40^0;B=60^0;C=80^0\)
tương tự với b nhé
Trong tam giác ABC có góc BAC + ABC + ACB = 180 độ
\(\Rightarrow\) góc ABC + góc ACB = 180 độ - góc BAC = 180 độ - 60 độ = 120 (độ)
Ta có góc IBC + góc ICB = góc ABC/2 + góc ACB/2 = (góc ABC + góc ACB)/2 = 120 độ/2 = 60 (độ)
Trong tam giác IBC có góc BIC + góc IBC + góc ICB = 180 độ
\(\Rightarrow\) góc BIC = 180 độ - (góc IBC + góc ICB) = 180 độ - 60 độ = 120 độ