Tập hợp các giá trị x thỏa mãn:
\(\frac{x +1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)là:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= (x + 1) (1/10 + 1/11 + 1/12 + 1/13 + 1/14 ) = 0
=> x + 1 = 0
=> x = - 1
\(\Rightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Leftrightarrow\left(x+1\right).\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Dễ thấy \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\)
Do đó x + 1 = 0
<=> x = -1
Vậy tập hợp các giá trị của x thảo mãn đề bài là {-1}
Đề đúng: \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
Ta có: \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Rightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Rightarrow x+1.\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Mà \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\)
\(\Rightarrow x+1=0\)
\(\Rightarrow x=-1\)
\(\Rightarrow x^{2004}=\left(-1\right)^{2004}=1\)
Vậy \(x^{2004}=1\)
=> \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
= (x + 1) (1/10 + 1/11 + 1/12 + 1/13 + 1/14 ) = 0
=> x + 1 = 0
=> x = - 1