K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2017

quà à k có nhé :))

15 tháng 10 2017

haizz mà cứ giải đi rồi u sẽ đc thở :)

5 tháng 8 2018

minh de0 can ban dang lai cau hoi cua minh dau :)

6 tháng 11 2019

Chào bạn, hãy theo dõi lời giải của mình nhé!

\(VT=\sqrt{4\left(a^2+b^2+c^2\right)+2\Sigma_{cyc}\sqrt{\left(a^2+3b^2\right)\left(b^2+3c^2\right)}}\)

\(\ge\sqrt{4\left(a+b+c\right)^2}=2\left(a+b+c\right)\) (Bunhia)

ez to prove\(\frac{\left(a+b+c\right)^2}{3}\ge a^2+b^2+c^2\)

\(\Rightarrow\frac{\left(a+b+c\right)^4}{3}\ge27\Rightarrow a+b+c\ge3\)

Thay vào và hoàn tất chứng minh.

P/s: Bài trên có ngược dấu đấy kkk

27 tháng 10 2021

Sửa đề \(\sqrt{a^2+bc}+\sqrt{b^2+ca}+\sqrt{c^2+ab}\le6\)

\(\sqrt{a^2+3b}=\sqrt{a^2+\left(a+b+c\right)b}=\sqrt{a^2+ab+b^2+bc}\\ =\sqrt{\left(a+b\right)\left(a+c\right)}\le\dfrac{a+b+a+c}{2}=\dfrac{2a+b+c}{2}\)

Cmtt \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{b^2+3c}\le\dfrac{a+2b+c}{2}\\\sqrt{c^2+3a}\le\dfrac{a+b+2c}{2}\end{matrix}\right.\)

Cộng VTV:

\(\Leftrightarrow VT\le\dfrac{2a+b+c+a+2b+c+a+b+2c}{2}\\ \Leftrightarrow VT\le\dfrac{4\left(a+b+c\right)}{2}=2\left(a+b+c\right)=6\)

Dấu \("="\Leftrightarrow a=b=c=1\)

27 tháng 10 2021

em chưa hiểu cách biến đổi của cái này ạ\(\sqrt{a^2+ab+b^2+bc}=\sqrt{\left(a+b\right)\left(a+c\right)}\)

7 tháng 5 2022

???????????????loằng ngoằng quá. Tui không hỉu cái GTNN

8 tháng 5 2022

GTNN là tắt của giá trị nhỏ nhất, 

Trong bài này bạn biến đổi sao cho biểu thức \(P\ge a\)   (số a là số biết trước) 

VD: Bạn đưa về dạng nào đó của biểu thức mà nó luôn lớn hơn hoặc bằng \(\dfrac{1}{3}\) Bạn có thể viết \(P\ge\dfrac{1}{3}\) thì GTNN của \(P=\dfrac{1}{3}\)  hay \(minP=\dfrac{1}{3}\)

Tìm được GTNN rồi thì bạn tìm ẩn để dấu "=" xảy ra, nghĩa là để BĐT xảy ra dấu =, lúc đó biểu thức P đạt giá trị nhỏ nhất,

 VD như: \(minP=\dfrac{1}{3}\) <=> Dấu = xảy ra

                                  <=> x = b (x là ẩn và b là biết trước)

Ở một số bài có thể cho điều kiện của ẩn.

NV
5 tháng 4 2022

\(\left(a^2+3b^2\right)\left(1+3\right)\ge\left(a+3b\right)^2\)

\(\Rightarrow\sqrt{a^2+3b^2}\ge\sqrt{\dfrac{\left(a+3b\right)^2}{4}}=\dfrac{a+3b}{2}\)

Tương tự:

\(\sqrt{b^2+3c^2}\ge\dfrac{b+3c}{2}\) ; \(\sqrt{c^2+3a^2}\ge\dfrac{c+3a}{2}\)

 Cộng vế \(\Rightarrow VT\ge\dfrac{4\left(a+b+c\right)}{2}=6\)

Dấu "=" xảy ra khi \(a=b=c=1\)

5 tháng 4 2022

toán lớp 6 đây á

4 tháng 9 2021

Ủa bị lỗi hả:v? undefined

18 tháng 1 2019

Dự đoán điểm rơi \(a=b=c=4\) .

Áp dụng BĐT AM-GM ta có :

\(\left\{{}\begin{matrix}a+4\ge4\sqrt{a}\\b+4\ge4\sqrt{b}\\c+4\ge4\sqrt{c}\end{matrix}\right.\Rightarrow2\sqrt{a}+2\sqrt{b}+2\sqrt{c}\le\dfrac{a+b+c+12}{2}\)

Áp dụng BĐT Bu-nhi-a-cốp-xki ta có :

\(\sqrt{3a+2\sqrt{a}+1}+\sqrt{3b+2\sqrt{b}+1}+\sqrt{3c+2\sqrt{c}+1}\le\sqrt{3.\left[3\left(a+b+c\right)+2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+3\right]}=\sqrt{3.\left(3.12+12+3\right)}=3\sqrt{17}\)

Vậy BĐT đã được chứng minh !

Hơi khoai :))))))

18 tháng 1 2019

DƯƠNG PHAN KHÁNH DƯƠNG cảm ơn nha ^-^

NV
7 tháng 5 2020

\(\left(1.a+\sqrt{3}.\sqrt{3}b\right)^2\le\left(1+3\right)\left(a^2+3b^2\right)\Rightarrow\sqrt{a^2+3b^2}\ge\frac{a+3b}{2}\)

\(\Rightarrow VT\ge\frac{a+3b}{2}+\frac{b+3c}{2}+\frac{c+3a}{2}=2\left(a+b+c\right)=6\)

Dấu "=" xảy ra khi \(a=b=c=1\)