Tìm số chính phương abcd biết ab-cd=1
Có bao nhiêu số có 2 chữ số sao cho tich của chúng là 1 số chính phương
Tìm số chính phương có 4 chữ số biết mỗi chữ số giảm 1 đơn vị thì đc số mới cũng là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(abcd) là kí hiệu số có 4 chữ số abcd.
từ: (ab)-(cd)=1 => (ab) =1+(cd)
giả sử n^2 = (abcd) = 100(ab) + (cd) = 100( 1+(cd)) + (cd) = 101(cd) +100
đk : 31<n<100
=> 101(cd) = n^2 -100 = (n+10)(n-10)
vì n< 100 => n-10 < 90 và 101 là số nguyên tố nên: n+10 = 101 => n =91
thử lại: số chính phương 91^2 = 8281 thỏa đk 82-81=1
trong tương tự đó
Mình nghĩ là ko có số nào đâu
Vì nếu x+1=a2 thì x=a2-1
Ko có 2 số chính phương nào liên tiếp nhau trừ 0 và 1
Mình nghĩ là ko có số nào đâu
Vì nếu x+1=a mũ2 thì x=a mũ2-1
Không có 2 số chính phương nào liên tiếp nhau trừ 0và1.
Gọi số cần tìm là abcd
Ta có: abcd=m2
(a-1)(b-1)(c-1)(d-1)=m2
=>(a-1).1000+(b-1).100+(c-1).10+(d-1)=n2
=>a.1000-1000+b.100-100+c.10-10+d-1=n2
=>(a.1000+b.100+c.10+d)-(1000+100+10+1)=n2
=>abcd-1111=n2
=>a2-1111=n2
=>m2-n2=1111
=>(m-n).(m+n)=1111=11.101
Vì m-n<m+n=>m-n=11
M+n=101
=>m=(101+11):2=56
n=56-11=45
=>abcd=m2=562=3136
Vậy số cần tìm là 3136
Gọi số cần tìm là abcd
Ta có: abcd=a2
(a-1)(b-1)(c-1)(d-1)=b2
=>(a-1).1000+(b-1).100+(c-1).10+(d-1)=b2
=>a.1000-1000+b.100-100+c.10-10+d-1=b2
=>(a.1000+b.100+c.10+d)-(1000+100+10+1)=b2
=>abcd-1111=b2
=>a2-1111=b2
=>a2-b2=1111
=>(a-b).(a+b)=1111=11.101
Vì a-b<a+b
=>a-b=11
a+b=101
=>a=(101+11):2=56
b=56-11=45
=>abcd=a2=562=3136
Vậy số cần tìm là 3136
Tính không làm đâu. Do làm biếng mà thấy không ai giúp hết nên để t giúp vậy
Gọi số chính phương cần tìm là abcd ta có
abcd = 1000a + 100b + 10c + d = X2
(a+1)(b+1)(c+1)(d+1) = 1000(a+1) + 100(b+1) + 10(c+1) + (d+1) =Y2
=> Y2 - X2 = (Y - X)(Y + X) = 1111 = 101 \(\times\)11
\(\Rightarrow\hept{\begin{cases}Y-X=1\\Y+X=1111\end{cases}OR\hept{\begin{cases}Y-X=11\\Y+X=101\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}Y=556\\X=555\end{cases}\left(loai\right)or\hept{\begin{cases}Y=56\\X=45\end{cases}\left(nhan\right)}}\)
Vậy số cần tìm là \(45^2=2025\)