Tìm x, y, z biết: \(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+2}=\dfrac{z}{x+y-3}\) = x+y+z. Nhớ giải đầy đủ nha.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: \(\dfrac{x^3}{8}=\dfrac{y^3}{27}=\dfrac{z^3}{64}\) và \(x^2+2y^3+3z^3=630\)
Có:\(\dfrac{x^3}{8}=\dfrac{y^3}{27}=\dfrac{z^3}{64}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
\(\Rightarrow\dfrac{x^2}{4}=\dfrac{2y^2}{18}=\dfrac{3z^2}{48}\) và \(x^2+2y^2+3z^2=630\)
Áp dụng t/c của dãy tỉ số bằng nhau có:
\(\dfrac{x^2}{4}=\dfrac{2y^2}{18}=\dfrac{3z^2}{48}=\dfrac{x^2+2y^2+3z^2}{70}=\dfrac{630}{70}=9\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=36\\y^2=\dfrac{9\cdot18}{2}=81\\z^2=\dfrac{9\cdot48}{3}=144\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\\\left[{}\begin{matrix}y=9\\y=-9\end{matrix}\right.\\\left[{}\begin{matrix}z=12\\z=-12\end{matrix}\right.\end{matrix}\right.\)
Vậy ....................
P/s: Chỗ -650 sửa thành 630 vì \(x^2+2y^2+3z^2\ge0\) nên = -650 rất vô lí --> mk sửa với lại sửa thành 630 thì kq đẹp hơn :))
~ Nếu mà đề bạn đúng thì thay số vào là đc nhé ~
Áp dụng t/c dtsbn ta có:
\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}=\dfrac{y+z+1+x+z+2+x+y-3}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\dfrac{1}{x+y+z}=2\Rightarrow2x+2y+2z=1\Rightarrow x+y+z=0,5\Rightarrow\left\{{}\begin{matrix}x+y=0,5-z\\y+z=0,5-x\\x+z=0,5-y\end{matrix}\right.\\ \dfrac{y+z+1}{x}=2\Rightarrow y+z+1=2x\Rightarrow0,5-x+1=2x\Rightarrow x=0,5\\ \dfrac{x+z+2}{y}=2\Rightarrow x+z+2=2y\Rightarrow0,5-y+2=2y\Rightarrow y=\dfrac{5}{6}\\ \dfrac{x+y-3}{z}=2\Rightarrow x+y-3=2z\Rightarrow0,5-z-3=2z\Rightarrow z=-\dfrac{5}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=x+y+z=\dfrac{x+y+z}{y+z+1+x+z+1+x+y-2}=\dfrac{x+y+z}{2x+2y+2z}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}\)
\(\dfrac{x}{y+z+1}=\dfrac{1}{2}\Rightarrow y+z+1=2x\Rightarrow y+z=2x-1\left(1\right)\)
\(\dfrac{y}{x+z+1}=\dfrac{1}{2}\Rightarrow x+z+1=2y\Rightarrow x+z=2y-1\left(2\right)\)
\(\dfrac{z}{x+y-2}=\dfrac{1}{2}\Rightarrow x+y-2=2z\)
\(x+y+z=\dfrac{1}{2}\left(3\right)\)
Thay (1) vào (3) ta có:
\(x+y+z=\dfrac{1}{2}\\ \Rightarrow x+2x-1=\dfrac{1}{2}\\ \Rightarrow3x=\dfrac{3}{2}\\ \Rightarrow x=\dfrac{1}{2}\)
Thay (2) vào (3) ta có:
\(x+y+z=\dfrac{1}{2}\\ \Rightarrow y+2y-1=\dfrac{1}{2}\\ \Rightarrow3y=\dfrac{3}{2}\\ \Rightarrow y=\dfrac{1}{2}\)
Ta có:
\(x+y+z=\dfrac{1}{2}\\ \Rightarrow\dfrac{1}{2}+\dfrac{1}{2}+z=\dfrac{1}{2}\\ \Rightarrow z=-\dfrac{1}{2}\)
TH1: \(x+y+z=0\Rightarrow x=y=z=0\)
TH2: \(x+y+z\ne0\)
\(x+y+z=\dfrac{x}{y+z+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}\)
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}2x+2y+2z=1\\2x=y+z+1\\2y=x+z+1\\2z=x+y-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x+2y+2z=1\\2x+2y+2z=3y+3z+1\\2x+2y+2z=3x+3z+1\\2x+2y+2z=3x+3y-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+2y+2z=1\\y+z=0\\x+z=0\\x+y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2.1+2z=1\\y=-z\\x=-z\\x+y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}z=-\dfrac{1}{2}\\x=\dfrac{1}{2}\\y=\dfrac{1}{2}\\\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(0;0;0\right);\left(\dfrac{1}{2};\dfrac{1}{2};-\dfrac{1}{2}\right)\)
\(\Rightarrow\dfrac{z+y+1}{x}=\dfrac{x+z+1}{y}=\dfrac{x+y-2}{z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2=x+y+z\\ \Rightarrow\left\{{}\begin{matrix}z+y+1=2x\\x+z+1=2y\\x+y-2=2z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y+z=2x-1\\x+z=2y-1\\x+y=2z+2\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}2x-1=2-x\\2y-1=2-y\\2z+2=2-z\end{matrix}\right.\Rightarrow\left(x,y,z\right)=\left(1;1;0\right)\)
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{10-15+12}=\dfrac{-49}{7}=-7\)
Do đó: x=-70; y=-135; z=-84
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
x10=y15=z12=x−y+z10−15+12=−497=−7x10=y15=z12=x−y+z10−15+12=−497=−7
Do đó: x=-70; y=-135; z=-84
Lời giải:
Áp dụng TCDTSBN:
$\frac{1}{x+y+z}=\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=\frac{2(x+y+z)}{x+y+z}=2$
\(\Rightarrow \left\{\begin{matrix} x+y+z=\frac{1}{2}\\ y+z+1=2x\\ x+z+2=2y\\ x+y-3=2z\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x+y+z=\frac{1}{2}\\ x+y+z+1=3x\\ x+y+z+2=3y\\ x+y+z-3=3z\end{matrix}\right.\)
\(\left\{\begin{matrix} \frac{1}{2}+1=3x\\ \frac{1}{2}+2=3y\\ \frac{1}{2}-3=3z\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=\frac{1}{2}\\ y=\frac{5}{6}\\ z=\frac{-5}{6}\end{matrix}\right.\)