Phân tích đa thức thành nhân tử
a) \(x^3y^3+x^2y^2+4\)
b)\(x^8y^8+x^4y^4+1\)
c)\(x^2-y^2+10x-6y+16\)
Nhanh nhaaaaaaaaaaa
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.10x\left(x-y\right)-6y\left(y-x\right)\\ =10x\left(x-y\right)+6y\left(x-y\right)\\ =\left(10x-6y\right)\left(x-y\right)\\ =2\left(5x-3y\right)\left(x-y\right)\)
\(b.14x^2y-21xy^2+28x^3y^2\\ =7xy\left(x-y+xy\right)\)
\(c.x^2-4+\left(x-2\right)^2\\ =\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2\\ =\left(x-2\right)\left(x+2+x-2\right)\\ =2x\left(x-2\right)\)
\(d.\left(x+1\right)^2-25\\ =\left(x+1-5\right)\left(x+1+5\right)=\left(x-4\right)\left(x+6\right)\)
phân tích đa thức thành nhân tử
a, 6x^2 + 7xy + 2y^2
=6x^2+3xy+4xy+2y^2
=3x(x+y)+2y(x+y)
=(3x+2y)(x+y)
b, 9x^2 - 9xy - 4y^2
=9x^2 +3xy-12xy-4y^2
=3x(x+y)-4y(x+y)
=(3x+4y)(x+y)
c, x^2 - y^2 + 10x - 6y + 16=x^2-y^2+6x-6y+4x+16=x(x+6)-y(x+6)+4(x+6)=(x-y+4)(x+6)
Bài làm
a, 6x2 + 7xy + 2y2
= 6x2 + 3xy + 4xy + 2y2
= ( 6x2 + 3xy ) + ( 4xy + 2y2 )
= 3x( 2x + y ) + 2y( 2x + y )
= ( 2x + y )( 3x + 2y )
b, 9x2 - 9xy - 4y2
= 9x2 - 12xy + 3xy - 4y2
= ( 9x2 - 12xy ) + ( 3xy - 4y2 )
= 3x( 3x - 4y ) + y ( 3x - 4y )
= ( 3x + y )( 3x - 4y )
c, x2 - y2 + 10x - 6y + 16
= x2 - y2 - 6x + 6y + 4x + 16
= x( x + 6 ) - y( x + 6 ) + 4( x + 6 )
= ( x - y + 4 )( x + 6 )
# Học tốt #
phân tích đa thức thành nhân tử
a) 4x^2+8xy-3x-6y
b)x^4y-3x^3y^2+3x^2y^3+xy^4
c)x^3-5x^2-14x
d)x^4+4y^4
\(4x^2+8xy-3x-6y=4x\left(x+2y\right)-3\left(x+2y\right)=\left(4x-3\right)\left(x+2y\right)\)
\(x^4y-3x^3y^2+3x^2y^3-xy^4=xy\left(x^3-3x^2y+3xy^2-y^3\right)=xy\left(x-y\right)^3\)
\(x^3-5x^2-14x=x\left(x^2-5x-14\right)=x\left(x^2-7x+2x-14\right)=x\left[x\left(x-7\right)+2\left(x-7\right)\right]=x\left(x-7\right)\left(x+2\right)\)
\(x^4+4y^4=\left(x^2\right)^2+2\times x^2\times2y^2+\left(2y^2\right)^2-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)
a) 3a +3b -a2-ab
= 3.(a+b) -a.(a+b)=(3-a).(a+b)
b) x2 +x +y2-y-2xy
=(x2 - 2xy+y2) +(x-y)
=(x-y).(x-y+1)
c) -x2 +7x -6
= -x2 + x +6x-6
= x.(1-x) -6.(1-x) = (1-x).(x-6)
d) 5x3y -10x2y2 +5xy3
= 5xy.(x2 -2xy +y2) = 5xy.(x-y)2
e) 2x2 +7x -15
= 2x2 -3x +10x -15
=x.(2x-3) + 5.(2x-3)
=(2x-3).(x+5)
g) x2 -2x +2y -xy
=x.(x-2)-y.(x-2)
=(x-y).(x-2)
h) bn go lai de ho mk dc k?
a: 2x^2y-50xy=2xy(x-25)
b: 5x^2-10x=5x(x-2)
c: 5x^3-5x=5x(x^2-1)=5x(x-1)(x+1)
d: \(x^2-xy+x=x\left(x-y+1\right)\)
e: x(x-y)-2(y-x)
=x(x-y)+2(x-y)
=(x-y)(x+2)
f: 4x^2-4xy-8y^2
=4(x^2-xy-2y^2)
=4(x^2-2xy+xy-2y^2)
=4[x(x-2y)+y(x-2y)]
=4(x-2y)(x+y)
f1: x^2ỹ-y^2+y
=(x-y)(x+y)+(x+y)
=(x+y)(x-y+1)
a) \(x^2-2x-4y^2-4y=\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)\)
\(=\left(x-1\right)^2-\left(2y+1\right)^2=\left(x-1-2y-1\right)\left(x-1+2y+1\right)\)
\(=\left(x-2y-3\right)\left(x+2y\right)\)
b) \(x^2-4x^2y^2+y^2+2xy=\left(x^2+2xy+y^2\right)-4x^2y^2\)
\(=\left(x+y\right)^2-4x^2y^2=\left(x+y-2xy\right)\left(x+y+2xy\right)\)
c) \(x^6-x^4+2x^3+2x^2=\left(x^6+2x^3+1\right)-\left(x^4-2x^2+1\right)\)
\(=\left(x^3+1\right)^2-\left(x^2-1\right)^2=\left(x^3+1-x^2+1\right)\left(x^3+1+x^2-1\right)=x^2\left(x^3-x^2+2\right)\left(x+1\right)\)
d) \(x^3+3x^2+3x+1-8y^3=\left(x+1\right)^3-8y^3=\left(x+1-2y\right)\left(x^2+2x+1+2xy+2y+4y^2\right)\)
Bài 2:
1: \(\left(2x-1\right)^2-4\left(2x-1\right)=0\)
=>\(\left(2x-1\right)\left(2x-1-4\right)=0\)
=>(2x-1)(2x-5)=0
=>\(\left[{}\begin{matrix}2x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)
2: \(9x^3-x=0\)
=>\(x\left(9x^2-1\right)=0\)
=>x(3x-1)(3x+1)=0
=>\(\left[{}\begin{matrix}x=0\\3x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)
3: \(\left(3-2x\right)^2-2\left(2x-3\right)=0\)
=>\(\left(2x-3\right)^2-2\left(2x-3\right)=0\)
=>(2x-3)(2x-3-2)=0
=>(2x-3)(2x-5)=0
=>\(\left[{}\begin{matrix}2x-3=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)
4: \(\left(2x-5\right)\left(x+5\right)-10x+25=0\)
=>\(2x^2+10x-5x-25-10x+25=0\)
=>\(2x^2-5x=0\)
=>\(x\left(2x-5\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{2}\end{matrix}\right.\)
Bài 1:
1: \(3x^3y^2-6xy\)
\(=3xy\cdot x^2y-3xy\cdot2\)
\(=3xy\left(x^2y-2\right)\)
2: \(\left(x-2y\right)\left(x+3y\right)-2\left(x-2y\right)\)
\(=\left(x-2y\right)\cdot\left(x+3y\right)-2\cdot\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+3y-2\right)\)
3: \(\left(3x-1\right)\left(x-2y\right)-5x\left(2y-x\right)\)
\(=\left(3x-1\right)\left(x-2y\right)+5x\left(x-2y\right)\)
\(=(x-2y)(3x-1+5x)\)
\(=\left(x-2y\right)\left(8x-1\right)\)
4: \(x^2-y^2-6y-9\)
\(=x^2-\left(y^2+6y+9\right)\)
\(=x^2-\left(y+3\right)^2\)
\(=\left(x-y-3\right)\left(x+y+3\right)\)
5: \(\left(3x-y\right)^2-4y^2\)
\(=\left(3x-y\right)^2-\left(2y\right)^2\)
\(=\left(3x-y-2y\right)\left(3x-y+2y\right)\)
\(=\left(3x-3y\right)\left(3x+y\right)\)
\(=3\left(x-y\right)\left(3x+y\right)\)
6: \(4x^2-9y^2-4x+1\)
\(=\left(4x^2-4x+1\right)-9y^2\)
\(=\left(2x-1\right)^2-\left(3y\right)^2\)
\(=\left(2x-1-3y\right)\left(2x-1+3y\right)\)
8: \(x^2y-xy^2-2x+2y\)
\(=xy\left(x-y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(xy-2\right)\)
9: \(x^2-y^2-2x+2y\)
\(=\left(x^2-y^2\right)-\left(2x-2y\right)\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-2\right)\)
a) 1/2(x3+8)=1/2(x+2)(x2-2x+4)
b) x4(x-y)+2x3(x-y)=x3(x+2)(x-y)
c) x2-(y2-6y+9)=x2-(y-3)2=(x-y+3)(x+y-3)
d) xy(x3+y3)=xy(x+y)(x2-xy+y2)
e)3x2(x2-25y2)=3x2(x-5y)(x+5y)
f) 4x4+4x2y2+y4-4x2y2= (2x2+y2)2-(2xy)2=(2x2-2xy+y2)(2x2+2xy+y2)
a) \(\frac{1}{2}x^3+4=\frac{1}{2}\left(x^3+8\right)=\frac{1}{2}\left(x+2\right)\left(x^2-2x+4\right)\)
b) \(x^5-x^4y+2x^4-2x^3y=x^3\left(x^2-xy+2x-2y\right)=x^3\left[x\left(x-y\right)+2\left(x-y\right)\right]=x^2\left(x-y\right)\left(x+2\right)\)
c) \(x^2-y^2+6y-9=x^2-\left(y-3\right)^2=\left(x+y-3\right)\left(x-y+3\right)\)
d) \(x^4y+xy^4=xy\left(x^3+y^3\right)=xy\left(x+y\right)\left(x^2-xy+y^2\right)\)
e) \(3x^4-75x^2y^2=3x^2\left(x^2-25y^2\right)=3x^2\left(x+5y\right)\left(x-5y\right)\).
f) \(4x^4+y^4=\left(2x^2+y^2\right)^2-\left(2xy\right)^2=\left(2x^2+y^2+2xy\right)\left(2x^2-y^2-2xy\right)\)
\(x^3y^3+x^2y^2+4=x^2y^2\left(xy+1+4\right)\)