a)x3 - 5x= 0
b)4x3-9x=0
c)2x3-72x=0
d)4(3x+1)2+16=25
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(9x^2-1=\left(3x-1\right)\left(5x+8\right)\)
\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)-\left(3x-1\right)\left(5x+8\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(3x+1-5x-8\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(-2x-7\right)=0\)
\(TH_1:3x-1=0\)
\(\Leftrightarrow x=\dfrac{1}{3}\)
\(TH_2:-2x-7=0\)
\(\Leftrightarrow x=-\dfrac{7}{2}\)
Vậy pt có tập nghiệm \(S=\left\{\dfrac{1}{3};-\dfrac{7}{2}\right\}\)
b) \(2x^3-5x^2+3x=0\)
\(\Leftrightarrow2x^3-2x^2-3x^2+3x=0\)
\(\Leftrightarrow2x^2\left(x-1\right)-3x\left(x-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(2x-3\right)=0\)
\(TH_1:x=0\)
\(TH_2:x-1=0\)
\(\Leftrightarrow x=1\)
\(TH_3:2x-3=0\)
\(\Leftrightarrow x=\dfrac{3}{2}\)
Vậy pt có tập nghiệm \(S=\left\{0;1;\dfrac{3}{2}\right\}\)
c) \(9x^2-16-x\left(3x+4\right)=0\)
\(\Leftrightarrow\left(9x^2-16\right)-x\left(3x+4\right)=0\)
\(\Leftrightarrow\left(3x-4\right)\left(3x+4\right)-x\left(3x+4\right)=0\)
\(\Leftrightarrow\left(3x+4\right)\left(2x-4\right)=0\)
\(TH_1:3x+4=0\)
\(\Leftrightarrow x=-\dfrac{4}{3}\)
\(TH_2:2x-4=0\)
\(\Leftrightarrow x=2\)
Vậy pt có tập nghiệm \(S=\left\{-\dfrac{4}{3};2\right\}\)
d) \(\dfrac{5x+4}{3}-1=\dfrac{3x-2}{4}\)
\(\Leftrightarrow\dfrac{20x+16}{12}-\dfrac{12}{12}=\dfrac{9x-6}{12}\)
\(\Rightarrow20x+16-12=9x-6\)
\(\Leftrightarrow20x-9x=-6-16+12\)
\(\Leftrightarrow11x=-10\)
\(\Leftrightarrow x=-\dfrac{10}{11}\)
Vậy pt có nghiệm duy nhất \(x=-\dfrac{10}{11}\)
a) Ta có: \(9x^2-1=\left(3x-1\right)\left(5x+8\right)\)
\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)=\left(3x-1\right)\left(5x+8\right)\)
\(\Leftrightarrow3x+1=5x+8\)
\(\Leftrightarrow3x-5x=8-1\)
\(\Leftrightarrow-2x=7\)
\(\Leftrightarrow x=\dfrac{-7}{2}\)
Vậy \(X=\dfrac{-7}{2}\)
b) Ta có: \(2x^3-5x^2+3x=0\)
\(\Leftrightarrow x\left(2x^2-5x+3\right)=0\)
\(\Leftrightarrow x\left[\left(2x^2-2x\right)-\left(3x-3\right)\right]=0\)
\(\Leftrightarrow x\left(x-1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\2x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy \(x=1\) hoặc \(x=0\) hoặc \(x=\dfrac{3}{2}\)
c) \(9x^2-16-x\left(3x+4\right)=0\)
\(\Leftrightarrow9x^2-16-3x^2-4x=0\)
\(\Leftrightarrow6x^2-4x-16=0\)
\(\Leftrightarrow2\left(3x^2-2x-8\right)=0\)
\(\Leftrightarrow3x^2-6x+4x-8=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-4}{3}\end{matrix}\right.\)
Vậy \(x=2\) hoặc \(x=\dfrac{-4}{3}\)
d) \(\dfrac{5x+4}{3}-1=\dfrac{3x-2}{4}\)
\(\Leftrightarrow\dfrac{20x+16}{12}-\dfrac{12}{12}=\dfrac{9x-6}{12}\)
\(\Leftrightarrow20x+16-12=9x-6\)
\(\Leftrightarrow20x+16-12-9x+6=0\)
\(\Leftrightarrow11x+10=0\)
\(\Leftrightarrow x=\dfrac{-10}{11}\)
Vậy \(x=\dfrac{-10}{11}\)
`1,(4x^3+3x^3):x^3+(15x^2+6x):(-3x)=0`
`<=> 4 + 3 + (-5x) + (-2)=0`
`<=> -5x+5=0`
`<=>-5x=-5`
`<=>x=1`
`2,(25x^2-10x):5x +3(x-2)=4`
`<=> 5x - 2 + 3x-6=4`
`<=> 8x -8=4`
`<=> 8x=12`
`<=>x=12/8`
`<=>x=3/2`
`3,(3x+1)^2-(2x+1/2)^2=0`
`<=> [(3x+1)-(2x+1/2)][(3x+1)+(2x+1/2)]=0`
`<=>( 3x+1-2x-1/2)(3x+1+2x+1/2)=0`
`<=>( x+1/2) (5x+3/2)=0`
`@ TH1`
`x+1/2=0`
`<=>x=0-1/2`
`<=>x=-1/2`
` @TH2`
`5x+3/2=0`
`<=> 5x=-3/2`
`<=>x=-3/2 : 5`
`<=>x=-15/2`
`4, x^2+8x+16=0`
`<=>(x+4)^2=0`
`<=>x+4=0`
`<=>x=-4`
`5, 25-10x+x^2=0`
`<=> (5-x)^2=0`
`<=>5-x=0`
`<=>x=5`
b: \(\Leftrightarrow\left(x-5\right)\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\\x=-1\end{matrix}\right.\)
c: \(\Leftrightarrow\left(x-1\right)\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=5\\x=-5\end{matrix}\right.\)
a)3x^3-8x^2-2x+4
=3x^3-2x^2-6x^2+4x-6x+4
=x^2(3x-2)-2x(3x-2)-2(3x-2)
=(x^2-2x-2)(3x-2).đến đây cậu tự làm nha
b)x^3-4x^2+7x-6
=x^3-2x^2-2x^2+4x+3x-6
=x^2(x-2)-2x(x-2)+3(x-2)
=(x-2)(x^2-2x+3)
.đến đây cậu tự làm nha
c)2x^3-9x+2
=2x^3-4x^2+4x^2-8x-x+2
=2x^2(x-2)+4x(x-2)-(x-2)
=(x-2)(2x^2+4x-1)
.đến đây cậu tự làm nha
b: \(8x^2-48x+6xy-36y\)
\(=8x\left(x-6\right)+6y\left(x-6\right)\)
\(=2\left(x-6\right)\left(4x+3y\right)\)
d: \(a^2-2ab+b^2-4\)
\(=\left(a-b\right)^2-4\)
\(=\left(a-b-2\right)\left(a-b+2\right)\)
\(a,\Leftrightarrow x^3-8-x^3-2x=12\Leftrightarrow-2x=20\Leftrightarrow x=-10\\ b,\Leftrightarrow x^2-6x+9-x^2+4=16\Leftrightarrow=-6x=3\Leftrightarrow x=-\dfrac{1}{2}\\ c,\Leftrightarrow x\left(x^2-9\right)=0\\ \Leftrightarrow x\left(x-3\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\\ d,\Leftrightarrow x^2\left(x-6\right)+9\left(x-6\right)=0\\ \Leftrightarrow\left(x^2+9\right)\left(x-6\right)=0\\ \Leftrightarrow x=6\left(x^2+9>0\right)\)
a, 3x2 - 8x2 - 2x+3=0
2x(3-8) - 2x+3=0
2x5 - 2x+3=0
2x5 - 2x=0-3=
2x5 - 2x=-3
2x(5-x)=-3
5-x=-3/2
5-x=1,5
x=5-1,5
x=3,5
a, \(x^3-5x=0\)
\(\Rightarrow x\left(x^2-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\sqrt{5}\end{matrix}\right.\)
b, \(4x^3-9x=0\)
\(\Rightarrow x\left(4x^2-9\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\4x^2-9=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\sqrt{\dfrac{9}{4}}\end{matrix}\right.\)
c, \(2x^3-72x=0\)
\(\Rightarrow2x\left(x^2-36\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-36=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm6\end{matrix}\right.\)
d, \(4\left(3x+1\right)^2+16=25\)
\(\Rightarrow4\left(3x+1\right)^2-9=0\)
\(\Rightarrow\left[2\left(3x+1\right)-3\right]\left[2\left(3x+1\right)+3\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}2\left(3x+1\right)-3=0\\2\left(3x+1\right)+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}3x+1=\dfrac{3}{2}\\3x+1=-\dfrac{3}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{6}\\x=-\dfrac{5}{6}\end{matrix}\right.\)
a, \(x^2-5x=0\)
\(\Rightarrow x\left(x^2-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\sqrt{5}\end{matrix}\right.\)
b, \(4x^3-9x=0\)
\(\Rightarrow x\left(4x^2-9\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\4x^2-9=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x^2=\dfrac{9}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{\dfrac{9}{4}}\end{matrix}\right.\)
c, \(2x^3-72x=0\)
\(\Rightarrow2x\left(x^2-36\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x=0\\x^2-36=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x^2=36\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)