Tìm c/s tận cùng của các lũy thừa (giải chi tiết)
a) 2335
b) 735-431
c) 21930. 91945
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những số có chữ số tận cùng là 2,4,8 khi nâng lên mũ 4 có tận cùng là 6
Thật vậy
\(4^{2k}=2^{4k}=...6\)
\(4^{2k+1}=2^{4k+2}=2^{4k}.4=\left(...6\right).4=...4\)
Ta có : 9^2k = (9^2)^k= (......1)^k=(.....1)
9^2k+1=9^2k+9=(9^2)^k+9=(.....1)^k+9=(....1)+9=(....0)
# chúc học tốt #
câu 1
cách giải:
74^1: 4 là chữ số tận cùng( dư 1)
74^2: 6 là chữ số tận cùng( dư 0)
30:2=15 dư 0
vậy chữ số tận cùng của 74^30 là 6
câu 2:
49^1: 9 là chữ số tận cùng (dư 1)
49^2: 1 là chữ số tận cùng ( dư 0)
31:2=15 dư 1
vậy chữ số tận cùng của 49^31 là 9
câu 3:
87^1: 7 là chữ số tận cùng ( dư 1)
87^2: 9 là chữ số tận cùng ( dư 2)
87^3: 3 là chữ số tận cùng ( dư 3)
87^4: 1 là chữ số tận cùng ( dư 0)
32:4=8 dư 0
vậy chữ số tận cùng của 87^32 là 1
câu 4:
23^1: 3 là chữ số tận cùng ( dư 1)
23^2: 9 là chữ số tận cùng ( dư 2)
23^3: 7 là chữ số tận cùng ( dư 3)
23^4: 1 là chữ số tận cùng ( dư 0)
35:4=8 dư 3
vậy chữ số tận cùng của 23^35 là 7
hk tốt
a) Trước hết, ta tìm số dư của phép chia 99 cho 4 :
99 - 1 = (9 - 1)(98 + 97 + … + 9 + 1) chia hết cho 4
=> 99 = 4k + 1 (k thuộc N) => 799 = 74k + 1 = 74k.7
Do 74k có chữ số tận cùng là 1 (theo tính chất 1c) => 799 có chữ số tận cùng là 7.
b) Dễ thấy 1414 = 4k (k thuộc N) => theo tính chất 1d thì 141414 = 144k có chữ số tận cùng là 6.
c) Ta có 567 - 1 chia hết cho 4 => 567 = 4k + 1 (k thuộc N)
=> 4567 = 44k + 1 = 44k.4, theo tính chất 1d, 44k có chữ số tận cùng là 6 nên 4567 có chữ số tận cùng là 4.
Mình chỉ có thể giải được từng ấy thôi.
a, Ta có : 2016 chia hết cho 4 mà lũy thừa
=> \(1944^{2016}\)có chữ số tận cùng giông với : \(4^{2016}=............6\)( vì lũy thừ có cơ số 4 và số mũ la số chia hết cho 4 thì chữ số tận cùng của lũy thừa đó luôn là 6 )
Vậy chữ số tận cùng của \(1944^{2016}\)là 6
b, Ta có \(1944^{2016}\)chia hết cho 4 ( Vì 1944 chia hết cho 4 ) và \(1944^{2016}=324^{2016}.6^{2016}\)
mà : 324 đồng dư với -1 (mod 25 )
=> \(324^{2016}\)đồng dư với \(\left(-1\right)^{2016}\)đồng dư với 1 ( mod 25 )
và : \(6^{2016}\)\(=6^{2015}.6\)
Ta có : \(6^{2015}=\left(6^5\right)^{403}\)\(=7776^{403}\)
Có : 7776 đồng dư với 1 ( mod 25 )
=> \(7776^{403}\)đồng dư với \(1^{403}\)đồng dư với 1 ( mod 25 )
Có : 6 đồng dư với 6 ( mod 25 )
=> \(1944^{2016}\)đồng dư với \(324^{2016}.6^{2015}.6\)đồng dư với 1.1.6 đồng dư với 6 ( mod 25 )
=> \(1944^{2016}\)chia cho 25 dư 6
=>\(1944^{2016}\)= 25.k + 6 chia hết cho 4
Ta có : 25.k + 6 chia hết cho 4
24.k + k + 2 + 4 chia hết cho 4
=> k + 2 chia hết cho 4
=> k = 4.m - 2
Thay k = 4.m - 2 ta có :
\(1944^{2016}=\) 25. (4.m - 2 ) + 6
\(1944^{2016}=\)100 .m - 50 + 6
\(1944^{2016}=\)100.m - 44 = .........00 - 44
\(1944^{2016}=\)...........56
Vậy hai chữ số tận cùng của \(1944^{2016}=\)56
Ai thấy mik làm đúng thì ủng hộ nha !!!
Cảm ơn các bạn nhiều
a) Ta có: 23^35=(...3)^35
=\(\left(\left(...3\right)^4\right)^8\).3^3=(...1)^8.3^3=(...1).(...7)=(...7)
b) 7^35-4^31=\(\left(\left(...7\right)^4\right)^8.7^3-\left(\left(...4\right)^2\right)^{15}.4\)
= (...1).(..3)-(...6).4
=(...3)-(...4)
=(...9)