Chứng minh rằng:
a, \(36^{36}-9^{10}⋮45\)
b, \(7^{1000}-3^{1000}⋮10\)
c, \(4^5+2^{11}+8^4⋮7\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3,57-56+55=55.52-55.5+55=55.(52-5+1)=55.21 chia hết cho 21
Câu:4:76+75-74=74.72+74.7-74=74.(72+7-1)=74.55=74.11.5=73.7.11.5=73.77.5 chia hết cho 77
Các câu khác tương tự
3: \(=5^5\left(5^2-5+1\right)=5^2\cdot21⋮21\)
4: \(=7^4\left(7^2+7-1\right)=7^4\cdot55=7^3\cdot5\cdot77⋮77\)
5: \(=\left(2^{26}+2^{25}-2^{24}\right)=2^{24}\left(2^2+2-1\right)=2^{24}\cdot5⋮5\)
a/ 8^7-2^18=1835008 chia hết cho 14=131072
b/10^6-5^7=921875 chia hết cho 59=15625
7^6+7^5-7^4=132055 hết cho 55=2401
a) 8^7-2^18= (2^3)-2^18=2^21-2^18=2^17 * (2^4-2)=2^17 * 14
14 chia hết cho 14 => ĐPCM
b) 10^6-5^7=5^6(2^6 - 5)=5^6 * 59
59 chia hết 59 => ĐPCM
c) 7^6 + 7^5 - 7^4 = 7^4 ( 7^2 + 7 - 1) = 7^4 * 55
55 cha hết 5 => ĐPCM
d) 16^5 + 2^15 = (2^4)^5 + 2^15= 2^15 * ( 2^5 + 1) = 2^15 * 33
33 chia hết 33 => ĐPCM
e và f chịu
g thì tính chữ số tận cùn của tổng đó
h) = 2^10 * (1 + 2 + 2^2) = 2^10 * 7
7 chia hết cho 7 => nó là 1 số tự nhiên
i chịu
a) Vì \(45=BCNN\left(5,9\right);ƯCLN\left(5,9\right)=1\)
Ta có :
\(36^{36}-9^{10}⋮9\) \(\left(1\right)\)
Mặt khác :
\(36^{36}=\left(......6\right)\)
\(9^{10}=\left(9^2\right)^5=81^5=\left(.......1\right)\)
Từ \(\Rightarrow36^{36}-9^{10}=\left(.....6\right)-\left(...1\right)=\left(.....5\right)⋮5\) \(\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Rightarrow36^{36}-9^{10}⋮45\rightarrowđpcm\)
b) Ta có :
\(7^{1000}=\left(7^2\right)^{500}=49^{500}\)
\(3^{1000}=\left(3^2\right)^{500}=9^{500}\)
Ta có lũy thừa tận cùng là 9 khi nâng lên lũy thừa bặc lũy thừa chẵn chữ số tận cùng sẽ là 1
\(\Rightarrow\left\{{}\begin{matrix}49^{500}=\left(....1\right)\\9^{500}=\left(....1\right)\end{matrix}\right.\)
\(\Rightarrow7^{1000}-3^{1000}=\left(.....1\right)-\left(...1\right)=\left(...0\right)⋮10\)
Vậy \(7^{1000}-3^{1000}⋮10\rightarrowđpcm\)
b: \(8^{10}-8^9-8^8=8^8\left(8^2-8-1\right)=8^8\cdot55⋮55\)
c: 5^5-5^4+5^3
=5^3(5^2-5+1)
=5^3*21 chia hết cho 7
e:
72^63=(3^2*2^3)^63=3^126*2^189
\(24^{54}\cdot54^{24}\cdot10^2=2^{162}\cdot3^{54}\cdot3^{72}\cdot2^{24}\cdot2^2\cdot5^2\)
\(=2^{188}\cdot3^{136}\cdot5^2\) chia hết cho 3^126*2^189
=>ĐPCM
g: \(=\left(3^4\right)^7-\left(3^3\right)^9-3^{26}\)
\(=3^{26}\left(3^2-3-1\right)=5\cdot3^{26}=5\cdot9\cdot3^{24}⋮5\cdot9=45\)
Vì \(45=BCNN\left(5,9\right)\) và \(ƯCLN\left(5,9\right)=1\)
Ta có :
\(36^{36}-9^{10}⋮9\left(1\right)\)
Mặt khác :
\(36^{36}=\left(......6\right)\)
\(9^{10}=\left(9^2\right)^5=81^5=\left(.....1\right)\)
\(\Leftrightarrow36^{36}-9^{10}=\left(....6\right)-\left(....1\right)=\left(.....5\right)\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow36^{36}-9^{10}⋮45\left(đpcm\right)\)