các bạn viết đáp án và giải chi tiết hộ mình mấy bài này nhé
mình cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số thứ nhất phải tìm là X, vậy số thứ 2 sẽ là 27-X.
Do UCLN(X,(27-7))=3 và BCNN(X,(27-X))=60. Do đó ta có X(27-X)=3.60=180. Hay 27X-X^2=180.
X^2-27X+180=0 <=> X^2-15X-12X+180=0 <=> X(X-15)-12(X-15)=0 <=> (X-15)(X-12)=0 Vậy hai số phải tìm là X=12 và X=15 là hai số 12, 15.
\(y:72,5=42,8-6,9.\\ \Leftrightarrow y:72,5=35,9.\\ \Leftrightarrow y=2602,75.\)
a, Ta có : 18 = 2 . 32
30 = 2. 3 . 5
77 = 7 . 11
ƯCLN ( 18 , 30 , 77 ) = 1
b, Ta có 16 = 24
80 = 24 . 5
176 = 24 . 11
ƯCLN ( 16 , 80 , 176 ) = 24 = 16
Ne k giup ng ta thi thoi nha. ng ta bik lam roi. K can cai thu vo duyen nhu ban dau. Chi tao co hoi cho co them diem thuong thoi. Ai ngu bik lien ha
Dễ thấy với a,b >0 thì (a+b)/2 ≥ √ab <=> 1/(a+b) ≤ 1/4 (1/a +1/b)
Áp dụng bất đẳng thức Cauchy ta được
1/(a+2b+3c)=1/[(a+c)+2(b+c)]≤ 1/4[1/(a+c)+1/2(b+c)] (lại áp dụng tiếp được)
≤ 1/16a+1/16c+1/32b+1/32c
=1/16a+1/32b+3/32c
Trường hợp này dấu "=" xảy ra <=> a+c=2(b+c);a=c;b=c <=> c= 0 mâu thuẩn giả thiết
Do đó dấu "=" không xảy ra
Thế thì 1/(a+2b+3c)<1/16a+1/32b+3/32c (1)
Tương tự 1/( b+2c+3a)<1/16b+1/32c+3/32a (2)
1/ ( c+2a+3b) < 1/16c+1/32a+3/32b (3)
Cộng (1)(2)(3) cho ta
1/( a+2b+3c) + 1/( b+2c+3a) + 1/ ( c+2a+3b) <(1/16+1/32+3/32)(1/a+1/b+1/c)
=3/16*(ab+bc+ca)abc= 3/16
tk nha mk trả lời đầu tiên đó!!!
e: \(=\dfrac{-3}{4}+\dfrac{5}{7}=\dfrac{-21+20}{28}=\dfrac{-1}{28}\)
a ) \(\dfrac{6}{13}\) + \(\dfrac{-14}{39}\)
= \(\dfrac{6.3}{13.3}\) + \(\dfrac{-14}{39}\)
= \(\dfrac{18}{39}\) - \(\dfrac{14}{39}\)
= \(\dfrac{4}{39}\)
{ các ý còn lại tương tự }
Câu 15 A
Câu 16 B