Chứng minh rằng \(7^{50}+7^{51}-7^{52}\) chia hết cho 55
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
751 + 750 = 749.72 + 749.7 = 749(72 + 7) = 749.56
Vì 56 chia hết cho 56 nên 749.56 chia hết cho 56 hay 751 + 750 chia hết cho 56.
Tick cho mình nha
1] chứng minh rằng ab - ab chia hết cho 9
Ta có:ab-ab=0\(⋮\)9
2] chứng minh rằng 7 mũ 8+ 7 mũ 7 - 7 mũ 6chia hết cho 55
Ta có:78+77-76=76.(72+7-1)=76.55\(⋮\)5
\(\overline{ab}-\overline{ba}\)
\(=\left(10a+b\right)-\left(10b+a\right)\)
\(=9a-9b\)
\(=9\left(a-b\right)⋮9\)
có 7^2016+7^2015+7^2014
=7^2014(7^2+7+1)
=7^2014.57
SUY RA biểu thức trên luôn chia hết cho 57
a. Mình chỉ có thể chứng minh 7^6 + 7^7 chia hết cho 56 được thôi.
Ta có: \(7^6+7^7=7^5\left(7+7^2\right)=7^5\times56\)
\(\Rightarrow7^6+7^7⋮56\)(vì có chứa thừa số 56)
b. \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}\)
\(=2^{15}\times\left(2^5+1\right)=2^{15}\times33\)
\(\Rightarrow16^5+2^{15}⋮33\)(vì có chứa thừa số 33)
sai đề à cậu 76 + 75 - 74
ta có ; 76 + 75 - 74
= 74(72 + 7 - 1)
= 74.55 chia hết cho 55
Sửa đề : \(7^6+7^5-7^4\)
\(=7^4\left(7^2+7-1\right)\)
\(=7^4\left(49+6\right)\)
\(=7^4\cdot55\)
7^4 x 55 chia hết cho 55 (đpcm)
\(7^6+7^5-7^4\)
= \(7^4.\left(7^2+7-1\right)\)
=\(7^4\left(49+7-1\right)\)
=\(7^4.55\)
Vì 55 chia hết cho 55 suy ra \(7^4.55⋮55\)
\(\Rightarrow7^6+7^5-7^4⋮55\)
Vậy ...
a)Đặt \(A=7^6+7^5-7^4\)
\(A=7^4\left(7^2+7-1\right)\)
\(A=7^4\cdot55⋮55\left(đpcm\right)\)
b)\(A=1+5+5^2+5^3+...+5^{50}\)
\(5A=5+5^2+5^3+5^4+...+5^{51}\)
\(5A-A=\left(5+5^2+5^3+5^4+...+5^{51}\right)-\left(1+5+5^2+5^3+...+5^{50}\right)\)
\(4A=5^{51}-1\)
\(A=\frac{5^{51}-1}{4}\)
a)
Ta có :
\(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4.55\)
=> Chia hết cho 5
b)
Ta có :
\(A=1+5+5^2+....+5^{50}\)
\(5A=5+5^2+....+5^{51}\)
=> 5A - A = \(\left(5+5^2+....+5^{51}\right)\)\(-\left(1+5+....+5^{50}\right)\)
\(\Rightarrow4A=5^{51}-1\)
\(\Rightarrow A=\frac{5^{51}-1}{4}\)
Sửa đề: \(7^{52}+7^{51}-7^{50}\)
\(=7^{50}\left(7^2+7-1\right)=7^{50}\cdot55⋮55\)