So sánh
A = 2008 . 2012 và B = 2009^2
B= 2014. 2016 và B = 2015^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mỗi số hạng trong biểu thức A đều nhỏ hơn 1 mà có 15 số nên tổng A sẽ nhỏ hơn 15
ta thay tong tren <1+1+1+1+1+1+1+1+1+1+1+1+1+1+1
hay tong tren be hon 15
a. Ta có \(\sqrt{2016}+\sqrt{2015}>\sqrt{2015}+\sqrt{2014}\to\frac{1}{\sqrt{2016}+\sqrt{2015}}<\frac{1}{\sqrt{2015}+\sqrt{2014}}\). Nhân liên hợp từng phân thức, ta có
\(\frac{\sqrt{2016}-\sqrt{2015}}{\left(\sqrt{2016}+\sqrt{2015}\right)\left(\sqrt{2016}-\sqrt{2015}\right)}<\frac{\sqrt{2015}-\sqrt{2014}}{\left(\sqrt{2015}+\sqrt{2014}\right)\left(\sqrt{2015}-\sqrt{2014}\right)}\)
\(\Leftrightarrow\sqrt{2016}-\sqrt{2015}<\sqrt{2015}-\sqrt{2014}\Leftrightarrow\sqrt{2016}+\sqrt{2014}<2\sqrt{2015}.\)
b. Tiếp tục thực hiện các biến đổi liên hợp, ta có
\(\sqrt{2008}-\sqrt{2005}+\sqrt{2009}-\sqrt{2007}=\frac{3}{\sqrt{2008}+\sqrt{2005}}+\frac{2}{\sqrt{2009}+\sqrt{2007}}\)
\(>\frac{3}{\sqrt{2015}+\sqrt{2010}}+\frac{2}{\sqrt{2015}+\sqrt{2010}}=\frac{5}{\sqrt{2015}+\sqrt{2010}}=\sqrt{2015}-\sqrt{2010}\)
Suy ra \(\sqrt{2008}-\sqrt{2005}+\sqrt{2009}-\sqrt{2007}>\sqrt{2015}-\sqrt{2010}\to\)
\(\to\sqrt{2008}+\sqrt{2009}+\sqrt{2010}>\sqrt{2005}+\sqrt{2007}+\sqrt{2015}.\) (ĐPCM).
so sánh: \(A=\frac{2014}{2015}+\frac{2015}{2016}\) và \(B=\frac{2014+2015}{2015+2016}\)
\(\Rightarrow B=\frac{2014}{2015+2016}+\frac{2015}{2015+2016}\)
Ta có: \(\frac{2014}{2015}>\frac{2014}{2015+2016}\) vì \(2015<2015+2016\)
\(\frac{2015}{2016}>\frac{2015}{2015+2016}\) vì \(2016<2015+2016\)
\(\Rightarrow\frac{2014}{2015}+\frac{2015}{2016}>\frac{2014}{2015+2016}+\frac{2015}{2015+2016}\)
\(\Rightarrow\frac{2014}{2015}+\frac{2015}{2016}>\frac{2014+2015}{2015+2016}\)
Vậy: \(A>B\)
a) \(\frac{47}{32}>\frac{36}{46}\)Vì phân số \(\frac{47}{32}>1;\frac{36}{46}< 1\)nên \(\frac{47}{32}>\frac{36}{46}\)
b) \(\frac{199}{200}< \frac{200}{201}\)Vì \(\frac{199}{200}=\frac{199.201}{200.201};\frac{200}{201}=\frac{200.200}{201.200}\)
ta so sánh 199.201 và 200.200
199.201 = 199.(200+1) = 199.200+199
200.200 = 200.(199+1) = 200.199+200
Vì 199.200 + 199 < 200.199+200 nên \(\frac{199}{200}< \frac{200}{201}\)
c) \(\frac{2012.2010}{2011.2011}=\frac{\left(2011+1\right).2010}{2011.\left(2010+1\right)}=\frac{2011.2010+2010}{2011.2010+2011}\)
\(\frac{2013.2009}{2014.2008}=\frac{2013.\left(2008+1\right)}{\left(2013+1\right).2008}=\frac{2013.2008+2013}{2013.2008+2008}\)
ta so sánh : \(\frac{2010}{2011}< \frac{2013}{2008}\) vì \(\frac{2010}{2011}< 1;\frac{2013}{2008}>1\)
a/ Ta có :
\(A=2008.2012=2008.\left(2009+3\right)=2008.2009+2008.3\)\(\left(1\right)\)
\(B=2009^2=2009.2009=2009.\left(2008+1\right)=2009.2008+2009\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow A>B\)
b/ tương tự