K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2017

Áp dụng cauchy-schwarz:

\(\dfrac{a}{b+c}+\dfrac{b}{c+d}+\dfrac{c}{d+e}+\dfrac{d}{e+a}+\dfrac{e}{a+b}=\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+bd}+\dfrac{c^2}{cd+ce}+\dfrac{d^2}{ed+ad}+\dfrac{e^2}{ae+be}\ge\dfrac{\left(a+b+c+d\right)^2}{ab+ac+ad+ae+bc+bd+be+cd+ce+de}\)

Giờ chỉ cần chứng minh

\(ab+ac+ad+ae+bc+bd+be+cd+ce+de\le\dfrac{2}{5}\left(a+b+c+d+e\right)^2\)

\(\Leftrightarrow ab+ac+ad+ae+bc+bd+be+cd+ce+de\le2\left(a^2+b^2+c^2+d^2+e^2\right)\)

điều này hiển nhiên đúng theo AM-GM:

\(ab\le\dfrac{a^2+b^2}{2};ac\le\dfrac{a^2+c^2}{2};ad\le\dfrac{a^2+d^2}{2}...\)

Cứ vậy ta thu được đpcm .Dấu = xảy ra khi a=b=c=d=e

P/s: : ]

26 tháng 10 2017

Đặt \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}=\dfrac{e}{f}=\dfrac{a+b+c+d+e}{b+c+d+e+f}=k\)

Ta có:

\(\dfrac{a}{f}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}.\dfrac{d}{e}.\dfrac{e}{f}=k^5=\left(\dfrac{a+b+c+d+e}{b+c+d+e+f}\right)^5\)

27 tháng 10 2017

Đúng là góc học tập của cậu tràn trề đại số và rất ít hình học. vui

14 tháng 12 2021

Đặt \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}=k\Rightarrow a=bk;b=ck;c=dk;d=ek\)

\(\Rightarrow a=bk=ck^2=dk^3=ek^4;b=ek^3\)

\(\Rightarrow\dfrac{a}{e}=\dfrac{ek^4}{e}=k^4\left(1\right)\)

Ta có \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}\Rightarrow\dfrac{a^4}{b^4}=\dfrac{b^4}{c^4}=\dfrac{c^4}{d^4}=\dfrac{d^4}{e^4}=\dfrac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5e^4}\left(2\right)\)

Lại có \(\dfrac{a^4}{b^4}=\left(\dfrac{a}{b}\right)^4=\left(\dfrac{ek^4}{ek^3}\right)^4=k^4\left(3\right)\)

\(\left(1\right)\left(2\right)\left(3\right)\RightarrowĐpcm\)

a) Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Leftrightarrow\dfrac{b}{a}=\dfrac{d}{c}\)

\(\Leftrightarrow\dfrac{b}{a}-1=\dfrac{d}{c}-1\)

\(\Leftrightarrow\dfrac{b-a}{a}=\dfrac{d-c}{c}\)

\(\Leftrightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)

\(\Leftrightarrow\dfrac{a}{a-b}=\dfrac{c}{c-d}\)(đpcm)

 

28 tháng 12 2021

Bạn à tôi chịu

 

28 tháng 12 2021

hihithì nó khó thiệt mà

23 tháng 4 2017

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT=\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+d}+\dfrac{d^2}{a+d}\)

\(\ge\dfrac{\left(a+b+c+d\right)^2}{a+b+b+c+c+d+d+a}\)

\(=\dfrac{\left(a+b+c+d\right)^2}{2\left(a+b+c+d\right)}=\dfrac{a+b+c+d}{2}=\dfrac{1}{2}=VP\)

Đẳng thức xảy ra khi \(a=b=c=d=\dfrac{1}{4}\)

13 tháng 6 2017

Đặt \(k=\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}\)

Ta có: \(k=\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}=\dfrac{a+b+c+d}{b+c+d+e}\) ( t/c dãy tỉ số bằng nhau )

\(\Rightarrow k^4=\left(\dfrac{a+b+c+d}{b+c+d+e}\right)^4\) (1)

\(k^4=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}.\dfrac{d}{e}=\dfrac{a}{e}\) (2)

Từ (1), (2) \(\Rightarrow\left(\dfrac{a+b+c+d}{b+c+d+e}\right)^4=\dfrac{a}{e}\left(đpcm\right)\)

Vậy...

13 tháng 6 2017

áp dụng tc dãy tỉ ra luôn

NV
27 tháng 7 2021

Đặt vế trái BĐT là P

Ta có:

\(\left(\dfrac{a^3}{b+c}+\dfrac{b^3}{c+a}+\dfrac{c^3}{a+b}\right)\left(a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)\right)\ge\left(a^2+b^2+c^2\right)^2\)

\(\Rightarrow P.\left(2ab+2bc+2ca\right)\ge1\)

\(\Rightarrow P\ge\dfrac{1}{2\left(ab+bc+ca\right)}\ge\dfrac{1}{2\left(a^2+b^2+c^2\right)}=\dfrac{1}{2}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)