Tìm nghiệm của phương trình:
a/ x+y=xy
b/ p(x+y)=xy với p là số nguyên tố
c/ 5xy-2y2-2x2+2=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thực sự mk rất mún giúp bn nhưng mk chưa hok tới!! xin lỗi
45646565557657767876876876565657676768876334455454655454
mình giải đc phần a) thôi:
x+y=xy
<=> x+y-xy=0
<=> x(1-y)-(1-y)+1=0
<=> (1-y)(x-1)=-1
do đó: 1-y=1;x-1=-1
hoặc 1-y=-1; x-1=1
+) 1-y=1 => y=0
x-1=-1=> x=0
+) 1-y=-1 => y=2
x-1=1 => x=2
=> cặp x,y cần tìm là (0;0) và (2;2)
We have equation \(x+y=xy\)
\(\Rightarrow xy-x-y=0\)
\(\Rightarrow x\left(y-1\right)-\left(y-1\right)=1\)
\(\Rightarrow\left(x-1\right)\left(y-1\right)=1=\left(-1\right).\left(-1\right)=1.1\)
So equation has two value \(\left(2;2\right),\left(0;0\right)\)
We have \(p\left(x+y\right)=xy\)
\(\Leftrightarrow xy-px-py=0\)
\(\Leftrightarrow xy-px-py+p^2=p^2\)
\(\Leftrightarrow x\left(y-p\right)-p\left(y-p\right)=p^2\)
\(\Leftrightarrow\left(x-p\right)\left(y-p\right)=p^2\)
But p is prime so \(Ư\left(p^2\right)=\left\{1;p;p^2\right\}\)
\(\Rightarrow\left(x-p\right)\left(y-p\right)=1.p^2=p.p=p^2.1=\left(-p\right).\left(-p\right)\)
\(=\left(-1\right).\left(-p^2\right)=\left(-p^2\right).\left(-1\right)\)
So equation has values \(S=\left(p+1;p^2+p\right);\left(2p;2p\right);\left(p^2+p;p+1\right);\left(0;0\right)\)
\(;\left(p-1;p-p^2\right);\left(p-p^2;p-1\right)\)
1. x+y=xy
=> x-xy+y=0
=> x(1-y)+y=0
=> x(1-y)+y -1 =-1
=> x(1-y)- (1-y) =-1=> (1-y)(x-1)=-1
* 1-y=-1 => y=2
x-1=1=> x=2
* 1-y =1 => y=0
x-1=-1 => x=0
a)
x+y = xy
<=> x(y-1) = y
<=> x = y/(y-1)= 1+1/(y-1)
Vì x là số nguyên nên 1/(y-1) là số nguyên
=> 1 chia hết cho y-1
=> y-1 là ước của 1
=> y-1=1 hoặc y-1=-1
=> y=2 hoặc y=0
Với y=2 => x=2
Với y=0=> x=0
Nghiệm nguyên phương trình là:
(x; y)∈ { ( 2; 2) , ( 0; 0) }
b) p(x+y) = xy
<=> xy - px - py + p2 = p2
<=> (x-p)(y-p) = p2
Mà p22 = p.p =(-p)(-p) = 1.p2 = (-p2)(-1)
Nghiệm nguyên của phương trình là:
(x;y) = (0;0); (2p;2p); (p+1;p^2+p); (p^2+p;p+1); (p-p^2;p-1); (p-1;p-p^2)