K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2018

\(A=x^2-4x-x\left(x-4\right)-15\)

\(=x^2-4x-x^2+4x-15=-15\)   =>  đpcm

\(B=5x\left(x^2-x\right)-x^2\left(5x-5\right)-13\)

\(=5x^3-5x^2-5x^3+5x^2-13=-13\)   =>   đpcm

\(C=-3x\left(x-5\right)+3\left(x^2-4x\right)-3x+7\)

\(=-3x^2+15x+3x^2-12x-3x+7=7\)   =>   đpcm

29 tháng 8 2018

\(D=7\left(x^2-5x+3\right)-x\left(7x-35\right)-14\)

\(=7x^2-35x+21-7x^2+35x-14=7\)  =>   đpcm

\(E=4x\left(x^2-7+2\right)-4\left(x^3-7x+2x-5\right)\)

\(=4x^3-20x-4x^3+20x+20=20\)    =>    đpcm

\(H=x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)

\(=5x^2-3x-x^3+x^2+x^3-6x^2-10x+3x=-10\) =>   đpcm

6 tháng 2 2022

Áp dụng công thức: \(A\left(x\right).B\left(x\right)=0\Leftrightarrow\left[{}\begin{matrix}A\left(x\right)=0\\B\left(x\right)=0\end{matrix}\right.\)

a) \(PT\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\4x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{5}{4}\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{2}{3};-\dfrac{5}{4}\right\}\)

b) \(PT\Leftrightarrow\left[{}\begin{matrix}2,3x-6,9=0\\0,1x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-20\end{matrix}\right.\)

Vậy: \(S=\left\{3;20\right\}\)

c) Vì \(x^2+1\ge1>0\forall x\)

\(\Rightarrow4x+2=0\)

\(\Leftrightarrow x=-\dfrac{1}{2}\)

Vậy: \(S=\left\{-\dfrac{1}{2}\right\}\)

d) \(PT\Leftrightarrow\left[{}\begin{matrix}2x+7=0\\x-5=0\\5x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=5\\x=-\dfrac{1}{5}\end{matrix}\right.\)

Vậy: \(S=\left\{-\dfrac{7}{2};5;-\dfrac{1}{5}\right\}\)

a: =>3x-2=0 hoặc 4x+5=0

=>x=2/3 hoặc x=-5/4

b: =>(x-3)(x+20)=0

=>x=3 hoặc x=-20

c: =>4x+2=0

hay x=-1/2

d: =>2x+7=0 hoặc x-5=0 hoặc 5x+1=0

=>x=-7/2 hoặc x=5 hoặc x=-1/5

17 tháng 9 2016

Phương trình trên 

<=> kx2 + (2 - 4k)x + (3k - 2) = 0

Ta có ∆' = (1 - 2k)2 - (3k - 2)k 

= 1 - 4k + 4k2 - 3k2 + 2k 

= k2 - 2k + 1 = (k - 1)\(\ge0\)

Vậy pt có nghiệm với mọi k

17 tháng 9 2016

\(k\left(x-1\right)\left(x-3\right)+2\left(x-1\right)=0\)

\(\left(x-1\right)\left[k\left(x-3\right)+2\right]=0\Rightarrow\orbr{\begin{cases}x=1\\k\left(x-3\right)+2=0\end{cases}}\)vậy pt luôn có nghiệm x = 1  với mọi k.

16 tháng 12 2022

1: \(\Leftrightarrow2x^2-10x-3x-2x^2=0\)

=>-13x=0

=>x=0

2: \(\Leftrightarrow5x-2x^2+2x^2-2x=13\)

=>3x=13

=>x=13/3

3: \(\Leftrightarrow4x^4-6x^3-4x^3+6x^3-2x^2=0\)

=>-2x^2=0

=>x=0

4: \(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)

=>-8x=6-14=-8

=>x=1

16 tháng 12 2022

`1)2x(x-5)-(3x+2x^2)=0`

`<=>2x^2-10x-3x-2x^2=0`

`<=>-13x=0`

`<=>x=0`

___________________________________________________

`2)x(5-2x)+2x(x-1)=13`

`<=>5x-2x^2+2x^2-2x=13`

`<=>3x=13<=>x=13/3`

___________________________________________________

`3)2x^3(2x-3)-x^2(4x^2-6x+2)=0`

`<=>4x^4-6x^3-4x^4+6x^3-2x^2=0`

`<=>x=0`

___________________________________________________

`4)5x(x-1)-(x+2)(5x-7)=0`

`<=>5x^2-5x-5x^2+7x-10x+14=0`

`<=>-8x=-14`

`<=>x=7/4`

___________________________________________________

`5)6x^2-(2x-3)(3x+2)=1`

`<=>6x^2-6x^2-4x+9x+6=1`

`<=>5x=-5<=>x=-1`

___________________________________________________

`6)2x(1-x)+5=9-2x^2`

`<=>2x-2x^2+5=9-2x^2`

`<=>2x=4<=>x=2`

8 tháng 3 2021

m( x- 4x + 3 ) + 2( x - 1 ) = 0

<=> mx2 - 4mx + 3m + 2x - 2 = 0

<=> mx2 - 2( 2m - 1 )x - 2 = 0

ĐKXĐ : m ≠ 0

Δ = b2 - 4ac = [ -2( 2m - 1 ) ]2 + 8

= 4( 2m - 1 )2 + 8

Dễ thấy Δ ≥ 8 > 0 ∀ m

hay pt luôn có nghiệm với mọi m ≠ 0 ( đpcm )

11 tháng 2 2018

khó thể xem trên mạng

11 tháng 2 2018

bài 1 câu a bỏ x= nhé !

31 tháng 10 2018

|5x-3| - 3x = 7

*Nếu \(x\ge\frac{3}{5}\)

5x - 3 - 3x = 7

2x = 10

x = 5 ( tm)

*Nếu \(x< \frac{3}{5}\)

3 - 5x - 3x = 7

-8x = 4 

x = \(-\frac{1}{2}\)( tm )

Làm hơi khó nhìn , thông cảm. Mệt rùi :)

31 tháng 10 2018

|x - 3| + |x - 5| - 4x = -28

*Nếu x < 3

3 - x + 5 - x - 4x = -28

-6x = -36

x = 6 ( loại do ko tm khoảng đang xét )

* nếu 3 < x < 5

x - 3 + 5 - x - 4x = -28

-4x = -30

x= \(\frac{15}{2}\) ( loại do ko tm khaongr đang xét )

*Nếu x > 5

x - 3 + x - 5 - 4x = -28

-2x = -20

x = 10 ( tm)

Vậy x =10

a: \(=x^2-2x-3x^2+5x-4+2x^2-3x+7=3\)

b: \(=2x^3-4x^2+x-1-5+x^2-2x^3+3x^2-x=4\)

c: \(=1-x-\dfrac{3}{5}x^2-x^4+2x+6+0.6x^2+x^4-x=7\)