b1: đưa thứa số vào trong dấu căn rồi tính :
a) \(6\left(\sqrt{15}-4\right)\sqrt{\dfrac{31+8\sqrt{15}}{12}}\)
b) \(\dfrac{x+1}{x-1}\sqrt{\dfrac{x^2-3x+2}{x+1}}\)
b2: Khử mẫu của biểu thức lấy căn rồi tính :
\(\dfrac{2\sqrt{3}-10}{5}\sqrt{\dfrac{5+\sqrt{3}}{5-\sqrt{3}}}\)
Bài 2:
\(\dfrac{2\sqrt{3}-10}{5}\cdot\sqrt{\dfrac{5+\sqrt{3}}{5-\sqrt{3}}}\)
\(=\dfrac{2\sqrt{3}-10}{5}\cdot\sqrt{\dfrac{28+10\sqrt{3}}{22}}\)
\(=\dfrac{2\sqrt{3}-10}{5}\cdot\dfrac{5+\sqrt{3}}{\sqrt{22}}\)
\(=\dfrac{2\left(\sqrt{3}-5\right)\left(\sqrt{3}+5\right)}{5\sqrt{22}}\)
\(=\dfrac{2\cdot\left(3-25\right)}{5\sqrt{22}}=\dfrac{-44}{5\sqrt{22}}=\dfrac{-2\sqrt{22}}{5}\)