3)tim x
a)(x-1).(y-2)=5
b)x.(y-3)=12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(\left(-1\right)\cdot\left(-2\right)\cdot\left(-3\right)\cdot\left(-4\right)\cdot\left(-5\right)\cdot\left[\left(-3\right)-\left(-5\right)\right]\)
\(=-\left(1\cdot2\cdot3\cdot4\cdot5\right)\cdot\left[-3+5\right]\)
\(=-120\cdot2=-240\)
b: \(1-2+3-4+5-6+...-98+99\)
=(-1)+(-1)+...+(-1)+99
=99-49=50
2a) (-1).(-2).(-3).(-4).(-5).[(-3)-(-5)]
= (-1).(-2).(-3).(-4).(-5).2
=> -240
2b) 1-2+3-4+5-6+...+98+99
= (1-2)+(3-4)+(5-6)+...+(97-98)+99
=> Ta có 98 cặp
= (-1)+(-1)+(-1)+...+(-1)+99
= 98(-1)+99
= (-98)+99
= 1
3a) (x-1)(y-2) = 5
=> x-1;y-2 \(\in\) Ư(5) = {-1,-5,1,5}
Ta có bảng :
x-1 | -1 | -5 | 1 | 5 |
y-2 | -5 | -1 | 5 | 1 |
x | 0 | -4 | 2 | 6 |
y | -3 | 1 | 7 | 3 |
Vậy x = {0,-4,2,6}
2b) x(y-3)=12
=> x;y-3 \(\in\) Ư(12) = {-1,-2,-3,-4,-12,1,2,4,12}
Tương đương với x = {-1,-2,-3,-4,-12,1,2,4,12}
_Mấy bác cứ thik đăng nhiều :v , nhìn mak ko muốn lm . E lm bài 1 thôi :v còn các bài còn lại bác tự lm ( nó cx dễ thôi mà ) _
Bài 1 :
\(a) 2x-13=25+6x\)
\(\Rightarrow2x-6x=25+13\)
\(\Rightarrow-4x=38\)
\(\Rightarrow x=-\dfrac{19}{2}\)
Vậy .......
\(b) 12-x=3x+6\)
\(\Rightarrow-x-3x=6-12\)
\(\Rightarrow-4x=-6\)
\(\Rightarrow x=\dfrac{3}{2}\)
Vậy .....
\(c) 40-(25-2x)=x\)
\(\Rightarrow40-25+2x=x\)
\(\Rightarrow15+2x=x\)
\(\Rightarrow2x-x=-15\)
\(\Rightarrow x=-15\)
Vậy ......
\(d) |x-3|=5\)
\(\Rightarrow\left[{}\begin{matrix}x-3=5\\x-3=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
Vậy ....
e) \(|x-3|+(x+2)+(x+1)=12\)
\(\Rightarrow\left|x-3\right|+x+2+x+1=12\)
\(\Rightarrow\left|x-3\right|+2x+3=12\)
\(\Rightarrow\left|x-13\right|+2x=9\)
\(\Rightarrow\left[{}\begin{matrix}x-3+2x=9\\-\left(x-3\right)+2x=9\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=6\end{matrix}\right.\) \(( x = 6 \) ko thỏa mãn điều kiện )
Vậy ....
a/ Ta có :
\(\left(x-1\right)\left(y-2\right)=5\)
Vì \(x,y\in N\Leftrightarrow x-1;y-2\in N\)\(,x-1;y-2\inƯ\left(5\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1=1\\y-2=5\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=5\\y-2=1\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2\\y=7\end{matrix}\right.\\\left\{{}\begin{matrix}x=6\\y=3\end{matrix}\right.\end{matrix}\right.\)
Vậy ...........
b/ tương tự
a ) \(\left(x-1\right)\left(y-2\right)=5\)
Xảy ra 4 TH :
TH1 : \(\left[{}\begin{matrix}x-1=5\\y-2=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\y=3\end{matrix}\right.\)
TH2 : \(\left[{}\begin{matrix}x-1=-5\\y-2=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\y=1\end{matrix}\right.\)
TH3 : \(\left[{}\begin{matrix}x-1=1\\y-2=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\y=7\end{matrix}\right.\)
TH4 : \(\left[{}\begin{matrix}x-1=-1\\y-2=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\y=-3\end{matrix}\right.\)
Vậy ........
b ) \(x\left(y-3\right)=12\)
Có 12TH xảy ra :
TH1 : \(\left[{}\begin{matrix}x=1\\y-3=12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\y=15\end{matrix}\right.\)
TH2 : \(\left[{}\begin{matrix}x=-1\\y-3=-12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\y=-9\end{matrix}\right.\)
TH3 : \(\left[{}\begin{matrix}x=12\\y-3=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=12\\y=4\end{matrix}\right.\)
TH4 : \(\left[{}\begin{matrix}x=-12\\y-3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-12\\y=2\end{matrix}\right.\)
TH5 : \(\left[{}\begin{matrix}x=2\\y-3=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\y=9\end{matrix}\right.\)
TH6 : \(\left[{}\begin{matrix}x=-2\\y-3=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\y=-3\end{matrix}\right.\)
TH7 : \(\left[{}\begin{matrix}x=6\\y-3=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\y=5\end{matrix}\right.\)
TH8 : \(\left[{}\begin{matrix}x=-6\\y-3=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6\\y=1\end{matrix}\right.\)
TH9 : \(\left[{}\begin{matrix}x=3\\y-3=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\y=7\end{matrix}\right.\)
TH10 : \(\left[{}\begin{matrix}x=-3\\y-3=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\y=-1\end{matrix}\right.\)
TH11 : \(\left[{}\begin{matrix}x=4\\y-3=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\y=6\end{matrix}\right.\)
TH12 : \(\left[{}\begin{matrix}x=-4\\y-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\y=0\end{matrix}\right.\)
Vậy ....