K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)

\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)

\(=\left(x^2+x+6\right)\left(x+2\right)\left(x-1\right)\)

b: \(\left(x^2+4x+8\right)^2+3x^3+14x^2+24x\)

\(=\left(x^2+4x+8\right)^2+3x^3+12x^2+24x+2x^2\)

\(=\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2\)

\(=\left(x^2+5x+8\right)\left(x^2+6x+8\right)\)

\(=\left(x^2+5x+8\right)\left(x+2\right)\left(x+4\right)\)

10 tháng 8 2015

 

(x+1)(x-4)(x+2)(x-8)+4x^2

=[(x+1)(x-8)][(x-4)(x+2)]+4x2

=(x2-7x-8)(x2-2x-8)+4x2

Đặt t=x2-2x-8 ta được:

(t-5x).t+4x2

=t2-5xt+4x2

=t2-xt-4xt+4x2

=t.(t-x)-4x.(t-x)

=(t-x)(t-4x)

thay t=x2-2x-8 ta được:

(x2-3x-8)(x2-6x-8)

Vậy (x+1)(x-4)(x+2)(x-8)+4x^2=(x2-3x-8)(x2-6x-8)

23 tháng 10 2016

a) Đặt \(x^2=y\Rightarrow x^4+x^2-20=y^2+y-20=y^2-4y+5y-20=\left(y-4\right)\left(y+5\right)\)

Thay trở lại, ta có: \(x^4+x^2-20=\left(x^2-4\right)\left(x^2+5\right)=\left(x-2\right)\left(x+2\right)\left(x^2+5\right)\)

b) Đặt \(x-y=z\Rightarrow\left(x-y\right)^2+4x-4y-12=z^2+4z-12=z^2-2z+6z-12=\left(z-2\right)\left(z+6\right)\)

Thay trở lại ta có kết quả sau: \(\left(x-y-2\right)\left(x-y+6\right)\)

12 tháng 9 2017

đặt \(x^2+4x+8=a\)

=> \(A=a^2+3ax+2x^2=a^2+ax+2ax+2x^2=a\left(a+x\right)+2x\left(a+x\right)\)

          \(=\left(a+x\right)\left(a+2x\right)\)

b) ta có 

\(B=\left(x+1\right)\left(x+7\right)\left(x+3\right)\left(x+5\right)+15=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)

đặt \(x^2+8x+11=a\)

=> \(B=\left(a-4\right)\left(a+4\right)+15=a^2-16+15=a^2-1=\left(a-1\right)\left(a+1\right)\)

         \(=\left(x^2+8x+10\right)\left(x^2+8x+12\right)=\left(x^2+8x+10\right)\left(x^2+6x+2x+12\right)\)

         \(=\left(x^2+8x+10\right)\left[x\left(x+6\right)+2\left(x+6\right)\right]=\left(x^2+8x+10\right)\left(x+6\right)\left(x+2\right)\)

12 tháng 9 2017

khó thế